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ABSTRACT

Several pPlasma diagnostics techniques measure the
line integrals of gquantities such as densities and optical,
ultraviolet, and X-ray emission. Some approaches for
reconstructing the local quantities from their line inte-
grals, based on methods utilized in computerized tomography,
electron microscopy, holographic interferometrv, and radio
astromomy, are derived and presented. ResultsS for the
special cases with source functions possassing helical
symmetry -~ ranging from DNA to MHD - are emphasized.
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I. Introduction

The derivation of local cylindrically-symmetric source
functions from projected intensities, called Abel inversion
[1,2], has been an essential part of many plasma physics
methods, ranging from optical {3] to X-ray spectroscopy [4].
Recently, interest has been expressed in the analysis of sources
which do not possess cylindrical symmetry, either because the
equilibrium (as in PDX or Doublet) [5] or perturbations of the
equilibrium (such as MHD modes) [6,7], violate the symmetry
condition. In these cases, more general techniques are
required for the reconstruction of two-dimensional images from
projections.

Similar methods have been developed for other applications.
In radio astronomy, Bracewell [8] developed a technique for
producing a two-dimensional map of celestial sources of radio
emission using an antenna with resolution in only one direction.
In holographic interferometry, Sweeney, et al. [9,10] measured
temperature distributions. 1In electron microscopy, De Rosier
and Klug [9], De Rosier and Moore [10], and Lake [11l] developed
methods for reconstructing helically-symmetric biélogical
structures such as ribonucleoprotein particles. The application
which has given rise to the most extensive literature has been
computerized tomography (12-14]1, wherein either the transmission
of externally-produced radiation or tne concentration of
radicactive sources is measured in an effort to produce images
of human organs by non-intrusive means. Various algorithms of

general utility have also been discussed [15-21}.



in a mathematical sense, the problem can be reduced to
determining a function £(r,68) given the projections I(s,¢),
where s is the one-dimensional variable perpendicular to the
line of sight and ¢ is the continuous variable describing the
viewing angles, as shown in Figure 1. Radon {[22-24] in 1917
first solved the equations agoverning such image reconstruction,
demonstrating that if a complete set of projections I(s,¢)
were available, the source function £(r,6) could be uniquely
determined. However, in a practical sense, a view of the object
from every angle (¢) is not generally available, unless some
assumption such as rigid rotation is invoked. 1In these
situations, the technique for reconstruction must be chosen
on the basis of applicability for a given class of source
functions.

In this paper, several analytic techniques for the inversion
of projections of helically~symmetric sources are described.
Iterative methods, such as algebraic reconstruction [2}, which
are more suitable for sources localized more in real-space
than in transform-space [25-26}, will be omitired.

In Section III. A. the inversion technique for m=0, 1,

2, and 3, formerliy used for the reconstruct.ion of MHD tearing
modes in the PLT tokamak [27] will be described; in Section
I1I. B. a general technique due to Cormack [20,21] will be
outlined; in Section III. C. a general Fourier transform
technigue will be applied to cases with helical symmetry,

giving a result equivalent to that of Cormack.



II. Formulation of the Problem

Figure 1 shows the geometry: a distribution of sources
f(x,y) s viewed by a detector system fixed with respect to a

rotated frame (x',y') where
X = x'cosé ~ y'sin¢ and y = y'cosd + x'sing .

The detectors view along the y'-axis such chat the projected
intensity along line x' with the coordinate system rotated
at angle ¢ is
o
I{x',9) = ~/‘dy' f(x'cos¢ - y'sind, y'cosd + x'sing) .
—

The topic of later sections will be the inversion of this
integral equation, given the set of projections I(x',¢).

The determination of the proper interpolation of I({x',¢)
between observation points requires introduction of knowledge of
the expected source functions. Sources which are localized
spatially (such as tumors in the brain) result in a large
number of components in an expansion ir a set of "poloidal"

harmonics:

«©

I(x',¢) = Z I (x') cos{m[ct - ¢m<x')]} ;

=0

on the other hand, sources localized in k-space (such as MHD
modes in tokamaks, or cross sections with only low multipole

moments) by definition require only a small number of terms

(1)

(3)
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in the expansion if the centef of the rotating detector system
coincides with the symmetry point of the source function
(otherwise, multipole moments of the source are generated).

In general, the determination of the functions Im(x')
and ¢m(x‘) can be made by Fourier analysis in the an
coordinate ¢ if the entire domain in ¢ is accessible. An
equivalent separation can be achieved if the source is assumed
to be rigidly rotating since the Doppler-shift gives a tem-
poral frequency proportional to the spatial wavenumber-m.
Tn more restricted cases, in which the intensity can be approxi-
mated by a finite number of harmonics, measurements at a finite
number of angles can separate the harmonics; for example,
if only an even and an odd source function are assumed to be
present, the even and odd components of the intensities are
the corresponding harmonics; similarly, some views at two
angles are sufficient for two even or two odd modes, subject
to aliasing criteria.

In the following sections, the functions Im(x') and ¢m(x')
will be assumed to have been determined and the problem to have

been reduced to the inversion of eguation (2), given equation (3).

IITI. Reconstruction Techniques

IITI. A. Method for m=0, 1, 2, and 3 (Used in References

[6] and [27]

Standard Abel-inversion technigues [1,2] utilize a coor-

dinate system (as shown in Figure 2) wherein the intensity along



a chord tangent to a circle of radius r is calculated as a line

integral of the emissivity at radius Ty with path length given by:
ds = rydrg/Vep - % . (4)

Extending the technique to situations where

f(r,0) = zm: fm(r) cos{rﬂ[e - em(r)]} ' (5)

the expression for the intensity along a chord tangent at

radius r and angle ¢ can be shown to be

‘ p T dr
I(r,¢) = 2 Jr—~____ :E: £,(ry) cos{ [S(ro) - Bm(roﬂ} , (6)

I0=r

where

8(ry) = o - cos'l(r/ro) ) (7)

Defining the functions

(r,) cos[me_(r,)
S N R L ®)
fm,s(rO) 51n[mem(ro)

and



anda

I (r) cos (mé)

sin (m¢)

it can be shown [7] that

Im,c(r) -, / r,dr, Tm(r/ro) fm,c(ro)
- 14
I, (D [2 2 foo<(ty) |
v ' r =r U ¢
0
where Tm(x) is the Chebyshev polynomial of order m [28]. The

problem thus reduces to an inversion of the general equation

rdr, T (r/r.)
g(r) = 2 09 m 0 x(ro) ’

(2 _ 2
L r

which is a Volterra equation of the first kind [29]. Standard

Abel inversion techniques suggest operating on both sides of

/- dr r Pm(r/u)
7
2o 2

u

the equation with

where Pm(x) is a polynomial in x such that reversing the oider
of integration in the right hand side, the integration over the
variable r reduces to a single power of u, which can in turn
be removed from the integrand, permitting a simple differesn-

tiation of the limits on the right hand side.

(9)

(11)

(12)
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With the particular choices,
Po(x) = 1, Py(x) = 1/x, P(x) = 1, P,(x) = (/%) (1 - 4/3 x¥)  (13)

the right hand sides can be integrated to vield

{dr r P (xr/u) o) %} dr r Pm(r/u) dro g, Tm(r/ro) (
r) = ¥ (ry,)
Vr2 - u2 Ve, - r2 0
u ro=r 0
[ drr Pm(r/u) Tm(r/ro)

=2 R0 no ) | ey

T
4
2
u T
) —_ = m=1
rO 2
= 2 dr x({xr,)
0 "0 5
u u T
— = m=2
rg 2
u
-— = m=3 .
r0 6

Moving to the left-hand side all v-dependence, with the exception
of the integration limit, both sides can be differentiated to

yield for each m:

1 d dr r wo(r)
Xpu) == - — — ———— (15)
0 T u 2

r - u
ey

—
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1 a Fary (16)
xpglu) = - - — _[ - — :
1 T du - u
r=u -
1 d 1 /‘ dr r wz(r) 17)
(u) = «— 10 — — Ty
X2 m du L2 4 vr® - u
o 2,2
3 4 /‘ ar(l - 4/3 r"/u®) Y,4{r) )
Xp(w) = ~ — . (18
3 7 du VEZ - 62

The singularities at r=u in each expression for »dd-m
are, in fact, integrable since {(r)~r. This technique of dif-
ferentiating an integral of the raw data affords somewhat more
noise immunité than those which differentiate prior to inte-
gration; in this sense, it is an extension of the work of Barr (2].

The digital implementation of this small-m method is des-
cribed in Appendix I. Figure 3 shows the results of picking a
source function, integrating to obtain the expected line integral,
and using the inversion formulae to estimate the original source
function. For m=0,1,2, the result is satisfactory; for m=3 a
divergence near the origin is encountered due to the approximation

of the line integral in the inversion.

III. B. Series Expansion Method

A technique closely related to that in Section III. A. is
that of Cormack {20,217 in which the function I{(x',¢) is again -

divided into two components for each m. The difference lies in
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the introduction of a pole in the integrand at the origin during
the inversion. Instead of utilizing the operator in equation (12),

the Cormack method uses on equation (11) the operator

(r/u)
u/r (19)

to yvield (after changing the order of integration):

o

/dr T, (r/w) / dr T (r/u) T_(r/ry) ur,
——— u/r Plr) =2 dr, x(r )f = — (20)
¢§§ - u? ro=u 0 - )(rz - ué; r

r=u “

As stated in the reference, using recurrence relations and

: t & s
expressions for Tm(x) and Tm(x) in terms of Tm_l(x) and Tm(x),
the second integral on the right hand side can be shown to

equal w/2; therefore

d r/U) u/r ¥ (r)
x{u) = - — — . (21)
m du = - u

For m=1, the expression for x{u) agrees with that of the previous
section.

This expression for general-.n can also be derived by Hankel
transforms as described by Cormack [21].

The digital implementation of equation (21) is somewhat
more difficult; if, as described in Appendix II, FINT(r) is
expanded as (Aj + Bjrz) in each radial interval, and Tm(r/u) is
expanded in powers of (r/u), then the integral FUNC(r) can be

\ : 2n
analytically performed using a routine to evaluate dx sec” (8).
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However, terms of the form l/uL, L > 0, appear and cause diver-

gences at the origin. This divergence can be traced to the

approximation used for FINT(r). Examples are shown in Figure 4.
A caonvergent expansion for FUNC(r) can be obtained by
expanding FINT(r) as
Tm (Br)
FINT(r) - o - (22)

/1 - g2r2 '

however, the fitting of the function to this form is at best

difficult, and for some m impossible (consider nodes for small m).
Another approach for integrating eguation (21) has been

suggested by Cormack [21], who expanded the line integral data as

2 .
v(r) = 2a a_ sin[(m + 28 + 1) cos™ (r/a)] (23)

=0
and determined the local function to be

oo

X(rg) = D (m+ 22 +1) a' Y (r /a) (24)
1=0

where R;(x) is the Zernicke polynomial [30]

. 2 (-1)S (m+ 20 - syt @ T 2L - 28
RN (x) = :E: ) (25)
(m + & - s)! (L ~ s)!

s!
s=0

This method has the advantages of (1) forcing the approxi-
mated line integral to possess the correct number of nodes, and
(2) minimizing errors by the least sgquares fitting implicit in

orthogonal expansions.
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Figure 5 shows examples of this technique for various values
of m. The applicability of this method to large m's is apparent,
The details of the fit are discussed in Appendix III.

Figure 6 shows the same source functions as in Figure 5,
except the line integral array has been multiplied by a functicn
differing from unity by a random amount of maximum amplitude 25%.
This illustrates the noise immunity for this method. For fewer

data points the sensitivity to error is increased.

IIT. C. Fourier Transform Technique

The two previous methods involved an expansion of the
source and projection into "poloidal™ harmonics; in contrast,
a third technigque based on the Fourier transform gives an
expression for the local source function which consists of
a double integral over k-space of the one-dimensional Fourier
‘Eransform of the projection at a related angle.

The fundamertal observation is that the one~dimensional
Fourier transform of the projection at rotation angle ¢ is
proportional to the two~dimensional transform of the source

function at angle ¢ in k-space. A

5
4]
£
9
o
b
oo}
tq
1

«Q
[+
1
(]
b
ff‘
®
3
H
o}

i

jection along the y'-axis at distance x' along the perpendicular
to the line of sight is given by equation (2). Defining the
transform pair as

o

- . l i
F(k) = /dx e KX £(x), £(x) = — fdk M ry (26)

- 0D
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the transform of I(x',$) 1is

o

. . 7
_/.dx‘e ikx! I(x',¢) = ./.dx' dy'e ikx f(x,y). (27)

o©

Transforming to the coordinate system (x,y) in the right-

hand side, the Jacobian being unity,

f ax'e X 1(x',¢)

-ik[x cos® + y 3in¢] £(x,y)

1]
é\B
Q.

x
Ak“\a
Q
=<

0]

(28)
F (k cos¢, k sing) .

Bence, the Fourier transform of the source function at wavevector
of magnitude k and angle ¢ is equal.to the transform of the
projection at rotation angle ¢. Using the transform pair in
equation (26), an expression for the source function at radius r

and spatial angle ¢ can be shown to be

-0

17 iy . 7 .
Flr,6) = = 2/ ax k/ a¢ eikr cos(9-8) fdx' X 1ixv,e) L (29)
RRA 0
Tn general, fast Fourier transforms can be used to determine the
source function given the projections.

The special case of helical symmetry with cross section

perpendicular to the axis of the helix, as expressed in

equation (3) with a single-m, is
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o w 25
fm(r'9)= _1_A fdk x ﬁx'lm(x')e'ikx‘ ao eikrcos(da-e) {eim [¢_¢m(x')]
8me v,
L 0

h}
-im {o~¢ (x")]!
SRR U ]J (30)
By the expansion of the first exponential in the right integral
by the Bessel function identity [31] familiar to plasma physicists
fror the expansion of the orbit integral of a particle in

groharmonics,
f {r,8)= ii— dk k Jds I_{(s) o iksy (kr)cos<m [p-¢_(s)] (31)
m '’ 2T m' m m )

Converting to an integral over positive-s,

-

(cos(ks) m=even

o m L P [«
£ (r,6)= t_Tlri_ fds Im(s)cos)Lm [e—¢m(s)]} j;m k I (kr) &
0 0 i sin(ks) m=odd.

(32}

Using the separation into orthogonal components as in equations

(8) and (9), this reduces to the eguation

m © (cos(ks) n=even
x(ry= {212 fds b(s) fdk k J_(kr)
0 0 i sin(ks) m=odd. (33)

Eliminating the k in the second integral by substituting deriva-
tions of trigonometric functions and integrating by parts, we
obtain

© o sin(ks) m=even

. I
y{r)= bl Gt 9 ./;s Yt (s). ./;k Jm(kr)
T 0 0 -i cos{ks) m=odd. (34)
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Using tables of integrals of Bessel functions or Hankel
transforms, expressions for the right-hand integral can be found:
expressing them in terms of Chebyshev polynomials of the first and
second kinds, manipulating them as done by Cormack in showing that
the Hankel transform of his equation (10) gives his equations (6)
a. ‘. {21}, egquation (32) can be shown to be equivalent to
equations (10) and (21).

Hence the general Fourier transform technigue from computed
tomography [18, 32] reduces to the Cormack approach in those
cases where the line integrals possess the symmetry given by
equation (3).

This last technique, given by equations (23)~(25), appears to
be the most preferable method for the cases of moderate-m

source functions.
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IV. Conclusion

Two forms for the inversion of the iine intergrals encountered
in reconstructing source functions with symmetry cos(m6) have been
derived and examples of results with trial functions given.

The first form, equations (15)~(18), is applicable to cases
with m=0,1,2, or 3. The numerical implementation consists of
integration over raw data points and o smoothing derivative;
acceptable results are obtained for m=0;1, and 2; a singularity
at the origin restricts use for m=3.

The seccnd form, equation (21), has been derived by two
technigques. Two numerical methods for its utilization have been
presented; the first involves a numerical integration of the raw
data followed by a derivative and posesses the same difficulties
as the first form solution; the second involves the expansion of
the line integrals in a set of appropriate basis functions and the
reconstruction of the local emissivity from the expansica coe-

efficients.
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Appendix I

Program for Small - m Inversion Technique

The digital implementation of equations (15)-(18) involves
the following steps.

(A} Form a regular array FINT(r) = {(1,L,L/r) PSI{r) for
m=(0,even,odd), where PSI(r) is the line integral array.

(B} Calculate the line integral FUNC(r) by sweeping over
the radii, approximating F _JT(r) by a polynomial (Aj + Bjrz)
in each region r. ., < r < rj, and summing over the analytical

i-i
integral for each region.

(¢) If m=2, correct if FUNC(()# 0. The shape used for this

. 2
applicaticn was CORRECTION (r) = —FUNC (D) [1—2 (r/a) + (r/a) 4],
which gave a correction on the local emission

CHI(r)~FUNC(0) 1 _ [1— (r/a)zj .

s 2
r

(D) Differentiate the function FUNC(r) to obtain a
function CHIREG({r) which is finite and even about the origin,

using a routine CHIREG(r)= 1 4 1 FUNC (r)

NA dr _NF
r

H

where FUNC{r) has been apprcximate

FUNC (r)= Z Cr
I=1

rNo+(I~l)ND

over NP points near radius r, given by Ty \yppqr Ty NpErT+1,

..., and NA=1l, NT=3, ND=2, NP=5, NLEFT=2; for m # 2, N0O=0,

NF=0; for m=2, NO0=2, NF=2.

(E) Return to local function CHI(r)= -(1/m) CHIREG(r)

(l,rz,r) for m=(0,even,o0dd).

(34)

(35)

(36)

(37)
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Appendix IT

Application of Cormack Solution with Numerical Integration

The approach for the use of equation (21) taken in this

section is similar to that in Appendix I.

(A) The array FINT(r) is formed.

(B) The array FUNC(r) is found by approximating FINT(r)
by a polynomial (Aj + BJ r2J in each region and performing the
sum of the analytic results in each region; this involves a
routine to compute the integral of sec(e)zN.

(C) The array FUNC(r) is differentiated as in step (D) of
Appendix I with NT=3, NF=0, NP=5, NLEFT=2; for m=0, ND=1, NO=0,
ard NA=0; for m=even, ND=3, NO=0, NA=2; for m=odd, ND=2, NO=0,
NA=1,

(D} The local function CHI(r) is determined.
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Appendix II31

Expansion of Line Integral in Orthogonal Functions

The last Cormack method, given by equations (23) and (24),
is easily programmed. The expansion in the basis set of
sinusoidal functions can be done by a least sguares approach
and a matrix inversion for a small number of terms and by using

orthogonality relations for large numbers of points and terms

in the expansion,



-23-

FIGUTs CAPTIONS

Figure 1. Coordinate systems and geometry. The source func-
tion f(x,y) is viewed by a set of detectors viewing along the y'
axis, resulting in the line integral function I(x',¢).

Figure 2. Geometry for the view of a source function f(ro,e)
along a chord tangent at r~divs r. The n~utput is a linc ~  oy.al
along the line s.

Figure 3. Results of picking a source function (solid line),
calculating the line integral (crossed line), and inverting the
line integral by the small-m technique to give the estimated local
source function (dotted line). Symmetries are (a) m=0, (b) m=1,
and (c) m=2.

Figure 4. Results of inversion using Ccrmack formula with
numerical integration and smoothing derivative. Symmetries are
(a) m=0, (b) m=1, (c) m=2, and (d) m=3.

Figure 5. Results of inversion using Cormack formula with
orthogonal expansion of line integral data. Symmetries are
(a) m=0, (b) m=1, (c) m=2, (d) mn=4, (e} m=8, and (f) m=12. Number
of data points is Z0.

Figure 6. Same as Figure 5, except line integral array has
been multiplied by a randum function differing from unity by a

maximum of 25%. Number of data points is 15.
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ds

Fig. 2. 783650
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