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ABSTRACT 

Several plasma diagnostics techniques measure the 
line integrals of quantities such as densities and optical, 
ultraviolet, and X-ray emission. Some approaches for 
reconstructing the local quantities from their line inte­
grals, based on methods utilized in computerized tomography, 
electron microscopy, holographic interferometry, and radio 
astromomy, are derived and presented. Results for the 
special cases with source functions possessing helical 
symmetry - ranging from DNA to MHD - are emphasized. 
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I. Introduction 

The derivation of local cylindrically-symmetric source 
functions from projected intensities, called Abel inversion 
[1,2], has been an essential part of many plasma physics 
methods, ranging from optical [3] to X-ray spectroscopy [4]. 
Recently, interest has been expressed in the analysis of sources 
which do not possess cylindrical symmetry, either because the 
equilibrium (as in PDX or Doublet) [5] or perturbations of the 
equilibrium (such as MHD modes) [6,7], violate the symmetry 
condition. In these cases, more general techniques are 
required for the reconstruction of two-dimensional images from 
projections. 

Similar methods have been developed for other applications. 
In radio astronomy, Bracewell [8] developed a technique for 
producing a two-dimensional map of celestial sources of radio 
emission using an antenna with resolution in only one direction. 
In holographic interferometry, Sweeney, et al. [9,10] measured 
temperature distributions. In electron microscopy, De Rosier 
and Klug [9], De Rosier and Moore [10] , and Lake [11] developed 
methods for reconstructing helically-symmetric biological 
structures such as ribonucleoprotein particles. The application 
which has given rise to the most extensive literature has been 
computerized tomography [12-14] , wherein either the transmission 
of externally-produced radiation or the concentration of 
radioactive sources is measured in an effort to produce images 
of human organs by non-intrusive means. Various algorithms of 
general utility have also been discussed [15-21]. 
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In a mathematical sense, the problem can be reduced to 
determining a function f(r,6) given the projections I (s ,<(>), 
where s is the one-dimensional variable perpendicular to the 
line of sight and <(> is the continuous variable describing the 
viewing angles, as shown in Figure 1. Radon [22-24] in 1917 
first solved the equations governing such image reconstruction, 
demonstrating that if a complete set of projections I(s,<f>) 
were available, the source function f(r,6) could be uniquely 
determined. However, in a practical sense, a view of the object 
from every angle ($) is not generally available, unless some 
assumption such as rigid rotation is invoked. In these 
situations, the technique for reconstruction must be chosen 
on the basis of applicability for a given class of source 
functions. 

In this paper, several analytic techniques for the inversion 
of projections of helically-symmetric sources are described. 
Iterative methods, such as algebraic reconstruction [2], which 
are more suitable for sources localized more in real-space 
than in transform-space [25-26] , will be omiti_ed. 

In Section III. A. the inversion technique for m=0, 1, 
2, and 3, formerly used for the reconstruction of MHD tearing 
modes in the PLT tokamak [27] will be described; in Section 
III. B. a general technique due to Cormack [20,21] will be 
outlined; in Section III. C. a general Fourier transform 
technique will be applied to cases with helical symmetry, 
giving a result equivalent to that of Cormack. 
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II. Formulation of the Problem 

Figure 1 shows the geometry: a distribution of sources 
f(x,y) rs viewed by a detector system fixed with respect to a 
rotated frame (x',y') where 

x = x'cos<|> - y 's incf and y = y'cos<}> + x ' s in ib . ( 

The detectors view along the y'-axis such chat the projected 
intensity along line x' with the coordinate system rotated 
at angle <J> is 

oo 

I(x',<|>) = / d y ' f(x'cos<j) - y'sincfi, y'cosc|> + x'sin<f>) . ( 

— 00 

The topic of later sections will be the inversion of this 
integral equation, given the set of projections I(x',(J>). 

The determination of the proper interpolation of l(x',<|>) 
between observation points requires introduction of knowledge of 
the expected source functions. Sources which are localized 
spatially (such as tumors in the brain) result in a large 
number of components in an expansion ir. a set of "poloidal" 
harmonics: 

oo 

l(x\*) = X , ^t*') c° s{ m[* " *m<x')]} '' ( 

m=0 

on the other hand, sources localized in k-space (such as MHD 
modes in tokamaks, or cross sections with only low multipole 
moments) by definition require only a small number of terms 
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in the expansion if the center of the rotating detector system 
coincides with the symmetry point of the source function 
(otherwise, multipole moments of the source are generated). 

In general, the determination of the functions Im(x') 
and 4 (x') can be made by Fourier analysis in the angular 

m 
coordinate <|> if the entire domain in $ is accessible. An 
equivalent separation can be achieved if the source is assumed 
to be rigidly rotating since the Doppler-shift gives a tem­
poral frequency proportional to the spatial wavenumber-m. 
In more restricted cases, in which the intensity can be approxi­
mated by a finite number of harmonics, measurements at a finite 
number of angles can separate the harmonics; for example, 
if only an even and an odd source function are assumed to be 
present, the even and odd components of the intensities are 
the corresponding harmonics; similarly, some views at two 
angles are sufficient for two even or two odd modes, subject 
to aliasing criteria. 

In the following sections, the functions Im(x') and ^(x') 
will be assumed to have been determined and the problem to have 
been reduced to the inversion of equation (2), given equation (3) . 

III. Reconstruction Techniques 

III. A. Method for m=0, 1, 2, and 3 (Used in References 
[6] and [27J 

Standard Abel-inversion techniques [1,2] utilize a coor­
dinate system (as shown in Figure 2) wherein the intensity along 



a chord tangent to a circle of radius r is calculated as a line 

integral of the emissivity at radius r Q with path length given by: 

ds = r 0dr 0/Vrg - r 2 . (4) 

If ( r n ) | Icosf i rwfr , . ) ] 
m,c 0 1 = f ( r i ) m ° 

f (r_) m ° s i n [ m e m ( r n ) ] j 
( m,s 0 J ( L B 0 < 

(5) 

E x t e n d i n g t h e t e c h n i q u e t o s i t u a t i o n s where 

f ( r , 6 ) = 2-< f ( r ) cosfrafe - 6 T n ( r ) ] ) , 

t h e e x p r e s s i o n f o r t h e i n t e n s i t y a long a chord t a n g e n t a t 

r a d i u s r and a n g l e <t> can be shown t o be 

CO 

Ur,» = 2 f / = = S W <=°s{m[e(r 0 ) - e j r ^ ] } , 

where 
( r Q ) = * - c o s " 1 l r / r 0 ) . (7) 

D e f i n i n g t h e f u n c t i o n s 

(6) 

(8) 

and 
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m,c (r) I (r) 
I m,s ] 

cos (mc()) 

s i n (rn<J>) 
(9) 

it can be shown [7] that 

ra,c (r) = 2 
I (r) ».. s 

CO 

I r 0 d r 0 T m ( r / r 0 ) f « W C ( r 0 ) 

r —r 0 ""0 lf™.,(V 
(10) 

where T (x) is the Chebyshev polynomial of order m [28]. The 
m . 

problem thus reduces to an inversion of the general equation 

'Mr) = 2 
CO 

/ 
r Q=r 

r 0 d r 0 T m ( r / r 0 ) 

/~2 2 
V l 0 ~ r 

X(r 0) (11) 

which is a Volterra equation of the first kind [29]. Standard 

Abel inversion techniques suggest operating on both sides of 

the equation with 

/ 

dr r P (r/u) m 

r 2 - u 2 

(12) 

where P (x) is a polynomial in x such that reversing the order 

of integration in the right hand side, the integration over the 

variable r reduces to a single power of u, which can in turn 

be removed from the integrand, permitting a simple differen­

tiation of the limits on the right hand side. 
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With the particular choices, 

P Q(x) = .1, P ](x) = 1/x, P 2(x) = 1, P 3(x) = (1/x) (1 - 4/3 x 2) (13) 

the right hand sides can be integrated to yield 

f f" dr r P m(r/u) T m(r/r n) 
= V «*o ro x u 0 , J y ( r2 . p 2 )- ( r» _ r 2 ) 

m=0 

= 2 J d r o ro * ( r o ] « 

u 

IT 

2 

u •n 

ro 2 

2 
u TT 

r 0 2 

u TT 

r o 6 

114) 

m=l 

ra=2 

in=3 

Moving to the left-hand side all v-dependence, with the exception 

of the integration Limit, both sides can be differentiated to 

yield for each m: 

X 0(u) (15) 
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I d jr dr ̂ (r) 
1 TT du -1 Vr - u 

(16) 

1 d 1 /" dr r i|/, (r) 
x ( u ) = ^ - U _ - ^ 2 . d7) 

TT du u vr — u 

3 d r dr(l - 4/3 r 2/u 2) i|/-,{r) 
X 3(u) = / ^ g- • (18) 

r=u 

The singularities at r=u in each expression for odd-m 
are, in fact, integrable since i|»(r)~r. This technique of dif­
ferentiating an integral of the raw data affords somewhat more 
noise immunity than those which differentiate prior to inte­
gration; in this sense, it is an extension of the work of Barr [2]. 

The digital implementation of this small-m method is des­
cribed in Appendix I. Figure 3 shows the results of picking a 
source function, integrating to obtain the expected line integral, 
and using the inversion formulae to estimate the original source 
function. For m=0,l,2, the result is satisfactory; for m=3 a 
divergence near the origin is encountered due to the approximation 
of the line integral in the inversion. 

III. B. Series Expansion Method 

A technique closely related to that in Section III. A. is 
that of Cormack [20,21] in which the function I(x" , <j>) is again • 
divided into two components for each m. The difference lies in 
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the introduction of a pole in the integrand at the origin during 
the inversion. Instead of utilizing the operator in equation (12), 
the Cormack method uses on equation (11) the operator 

/ 
dr T (r/u) 

m u/r (19) ri 2 
Vr - u 

to yield (after changing the order of integration): 
Co oo r . 

/dr T (r/u) f f dr T (r/u) T (r/r ' 

r=u ^ r u r„=u r=u^-0 " r H r " U / 
— (20) 

r0 

As stated in the reference, using recurrence relations and 
expressions for T'(x) and T"(x) in terms of T ,(x) and T (x) , 
the second integral on the right hand side can be shown to 
equal TT/2 ; therefore 

00 
1 d f dr T (r/u) u/r ty (r) 

X(u) - - - - J m ^ • (21) 
n du „_u vr^ - u^ 

For m=l, the expression for x(u)' agrees with that of the previous 
section. 

This expression for general-.n can also be derived by Hankel 
transforms as described by Cormack [21]. 

The digital implementation of equation (21) is somewhat 
more difficult; if, as described in Appendix II, FINT(r) is 
expanded as (A. + B.r2) in each radial interval, and T (r/u) is 
expanded in powers of (r/u), then the integral FUNC(r) can be 
analytically performed using a routine to evaluate / dx sec (6). 
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However, terms of the form 1/u , L > 0, appear and cause diver­
gences at the origin. This divergence can be traced to the 
approximation used for FINT(r). Examples are shown in Figure 4. 

A convergent expansion for FUNC(r) can be obtained by 
expanding FINT(r) as 

Tm ( f i r ) 

/l - B 2r 2 
FINT(r) ' a •—"' ; (22) 

however, the fitting of the function to this form is at best 
difficult, and for some m impossible (consider nodes for small m). 

Another approach for integrating equation (21) has been 
suggested by Cormack [21], who expanded the line integral data as 

<|/(r) = 2a 2^j a sin [(m + 21 + 1) cos 1 (r/a)] (23) 
1=0 

and determined the local function to be 

X(r 0) = ] T to + 21 + 1) a£ R* (rQ/a) (24) 
1=0 

where R (x) is the Zernicke polynomial [30] 

. * (-l)S.(m + 21 - s)I x m + 2 £ - 2 S 

R m(x) = > . (25) 
^ s! (ra + I - s) ! U - s) ! 

This method has the advantages of (1) forcing th<=? approxi­
mated line integral to possess the correct number of nodes, and 
(2) minimizing errors by the least squares fitting implicit in 
orthogonal expansions. 
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Figure 5 shows examples of this technique for various values 
of m. The applicability of this method to large m's is apparent. 
The details of the fit are discussed in Appendix III. 

Figure 6 shows the same source functions as in Figure 5, 
except the line integral array has been multiplied by a function 
differing from unity by a random amount of maximum amplitude 25%. 
This illustrates the noise immunity for this method. For fewer 
data points the sensitivity to error is increased. 

III. C. Fourier Transform Technique 

The two previous methods involved an expansion of the 
source and projection into "poloidal" harmonics; in contrast, 
a third technique based on the Fourier transform, gives an 
expression for the local source function which consists of 
a double integral over k-space of the one-dimensional Fourier 
transform of the projection at a related angle. 

The fundamertal observation is that the one-dimensional 
Fourier transform of the projection at rotation angle $ is 
proportional to the two-dimensional transform of the source 
function at angle $ in k-space. As shown in Figure 1, the pro­
jection along the y'-axis at distance x' along the perpendicular 
to the line of sight is given by equation (2). Defining the 
transform pair as 

= f dx e l k x f(x), f(x) = — [ dk e 3 F(k) = / dx e J-"x f(x), f(x) = — / dk e a k x F(k) , (26) 
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the transform of I(x',4>) is 

OJ 00 

(27) 
f dx'e~ i k x' I(x',((.) = J dx' /dy'e i k x'f(x,y 

— CO — C O — 0 0 

Transforming to the coordinate system (x,y) in the right-
hand side, the Jacobian being unity, 

CO CO CO 

f dx'e'Lyx' I(x\<|>) = ^ x y*dy e ' i k [ x c o s * + * 3 i n $ ] f ( x , y ) 

(28) 
= F (k cosiji, k sin<f>) 

Hence, the Fourier transform of the source function at waveveotor 
of magnitude k and angle <p is equal to the transform of the 
projection at rotation angle <j>. Using the transform pair in 
equation (26), an expression for the source function at radius r 
and spatial angle <f> can be shown to be 

2TT 

f(r,e) = — 
(2 

^ y d k k | d * e i k r cos<*-e> j f d x . e i k x ' i (x ' ,«) . (29) 
0 0 

In general, fast Fourier transforms can be used to determine the 
source function given the projections. 

The special case of helical symmetry with cross section 
perpendicular to the axis of the helix, as expressed in 
equation (3) with a single-m, is 
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f ( r , 9 ) = - i - /dk k /dx-I (x')e- i k x' fm eikrcosU-e)limft-Vx')] 

+ e-i«i[*-«m(K')]J (30) 

By the expansion of the first exponential in the right integral 
by the Bessel function identity [31] familiar to plasma physicists 
froir. the expansion of the orbit integral of a particle in 
groharmonics, 

cc co 

fm(r,8)= ijj- ̂ dk k fas lm(s) e'^^Ckrlcosjm [e-<J>m(s)]|. (31) 

Converting to an i n t e g r a l over p o s i t i v e - s , 

cos(ks) m=even 
'-~^— Ids l m (s)cos-|m [e-<t)m(s)]j /dk k J m (k r ) 

/_ *" *• "' J J '" I i s in(ks) rn=odd. 

(32) 
Using the separation into orthogonal components as in equations 
(8) and (9), this reduces to the equation 

•« °° ! cos(ks) m=even 
X(r)= {~l]- J As 0(s) /dk k Jm(kr) J 

0 o i sin(ks) m=odd. (33) 

Eliminating the k in the second integral by substituting deriva­
tions of trigonometric functions and integrating by parts, we 
obtain 

CO TO 

~-il— Jds r (s). /dl X(r)= ~{~x' /ds V (s). /dk Jm(kr) 
sin(ks) m=even 

-i cos(ks) m=odd. (34) 
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Using tables of integrals of Bessel functions or Hankel 
transforms, expressions for the right-hand integral can be found; 
expressing them in terms of Chebyshev polynomials of the first and 
second kinds, manipulating them as done by Cormack in showing that 
the Hankel transform of his equation (10) gives his equations (6) 
a . '• i : [21] , equation (32) can be shown to be equivalent to 
equations (10) and (21). 

Hence the general Fourier transform technique from computed 
tomography (18, 33] reduces to the Cormack approach in those 
cases where the line integrals possess the symmetry given by 
equation (3). 

This last technique, given by equations (23)-(25), appears to 
b<=. the most preferable method for the cases of moderate-m 
source functions. 
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IV. Conclusion 
Two forms for the inversion of the line intergrals encountered 

in reconstructing source functions with symmetry cos(mB) have been 
derived and examples of results with trial functions given. 

The first form, equations (15)-(18), is applicable to cases 
with m=0,l,2, or 3. The numerical implementation consists of 
integration over raw data points and a smoothing derivative; 
acceptable results are obtained for m=0^1, and. 2; a singularity 
at the origin restricts use for m=3. 

The second form, equation (21) , has been derived by two 
techniques. Two numerical methods for its utilization have been 
presented; the first involves a numerical integration of the raw 
data followed by a derivative and posesses the same difficulties 
as the first form solution; the second involves the expansion of 
the line integrals in a set of appropriate basis functions and the 
reconstruction of the local emissivity from the expansion coe-
efficients. 
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Appendix I 

Program for Small - m inversion Technique 

The digital implementation of equations (15)'(18) involves 

the following steps. 

(M Form a regular array FINT(r} = (l,l,l/i) ?SI(r) for 

m=(0,even,odd), where PSI(r) is the line integral array. 

(B) Calculate the line integral FUNC(r) by sweeping over 
2 the radii, approximating F JIT (r) by a polynomial (A + B.r ) 

in each region r._. < r < r. , and summing over the analytical 

integral for each region. 

(C) If m=2, correct if FUNC(0) ¥* 0. The shape used for this 

application was CORRECTION(r) = -FUUC(O) fl-2 (r/a) + (r/a) 41, 

which gave a correction on the local emission 

CHI (r)-FUNC (0) 1_ fl-fr/a) 2l . 

(D) Differentiate the function FUNC(r) to obtain a 

function CHIREG(r) which is finite and even about the origin, 

using a routine CHIRE«3(r)= 1 d_ 1 FUNC(r) 
NA dr rNF 

where FUNCir) has been approximated 

FUNC(r)= g C j rN°+<I-^D 
1=1 

over NP points near radius r.. given by r j _ N L E F T r rj~NLEFT+l, 

..., and NA=1, NT=3, ND=2, NP=5, NLEFT=2; for m / 2, N0=0, 

NF=0; for m=2, N0=2, NF=2. 

(E) Return to local function CHI(r)= -(l/w) CHIREG(r) 

(l,r ,r) for m=(0,even,odd). 
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Appendix II 

Application of Cormack Solution with Numerical Integration 

The approach for the use of equation (21) taken in this 

section is similar to that in Appendix I. 

(A) The array FINT(r) is formed. 

(B) The array FUNC(r) is found by approximating FINT(r) 
2 

by a polynomial (A. + B r ) in each region and performing the 

sum of the analytic results in each region; this involves a 

routine to compute the integral of sec (9) 

(C) The array FUNC(r) is differentiated as in step (D) of 

Appendix I with NT=3, NF=0, NP=5, NLEFT=2; for m=0, ND=l, N0=0, 

and NA=0; for m=even, ND=3, N0=0, NA=2; for m=odd, ND=2, N0=0, 

NA=1. 
(D) The local function CHI(r) is determined. 
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Appendix III 

Expansion of Line Integral in Orthogonal Functions 

The last Cormack method, given by equations (2 3) and (24), 
is easily programmed. The expansion in the basis set of 
sinusoidal functions can be done by a least squares approach 
and a matrix inversion for a small number of terms and by using 
orthogonality relations for large numbers of points and terms 
in the expansion. 
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FIGUTJS CAPTIONS 

Figure 1. Coordinate systems and geometry. The source func­
tion f (x,y) is viewed by a set of detectors viewing along the y' 
axis, resulting in the line integral function I(x',q>). 

Figure 2. Geometry for the view of a source function f (r , 9) 
alonq a chord tangent at r̂ -di* <? r. ^ho nut-put is n line uy^al 
along the line s. 

Figure 3. Results of picking a source function (solid line), 
calculating the line integral (crossed line), and inverting the 
line integral by the small-m technique to give the estimated local 
source function (dotted line). Symmetries are (a) m=0, (b) m=l, 
and (c) m=2. 

Figure 4. Results of inversion using Ci-rmack formula with 
numerical integration and smoothing derivative. Symmetries are 
(a) m=0, (b) m=l, (c) m=2, and (d) m=3. 

Figure 5. Results of inversion using Cormack formula with 
orthogonal expansion of line integral data. Symmetries are 
(a) m=0, (b) m=l, (c) m=2, (d) m=4, (e) m=8, and (f) m=12. Number 
of data points is 20. 

Figure 6. Same as Figure 5, except line integral array has 
been multiplied by a random function differing from unity by a 
maximum of 25%. Number of data points is 15. 
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