11 research outputs found

    Search for high-energy gamma-ray emissionand upgrade of the GAMMA experiment on Mt. Aragats

    No full text
    We present the current status of the search for possible diffuse orlocalized gamma-ray emission at energies above about 100 TeV with the GAMMA air shower detector which is located at 3200 m a.s.l. on Mt. Aragats, Armenia. For this search we select muon-poor extensive air showers detected by GAMMA.We discuss ongoing studies of improved criteria for the selection ofmuon-poor showers, taking into account the geometry of the muon underground detector array in 2004–2011. A modernization of the muon array was completed between October 2011 and February 2012. Sixty additional muon scintillation detectors were installed and are now taking data. They will improvethe the selection of muon-poor showers, the primary energy estimation, and should also yield improved information on the mass composition

    Investigation of EAS cores

    No full text
    The development of nuclear-electromagnetic cascade models in air in the late forties have shown informational content of the study of cores of extensive air showers (EAS). These investigations were the main goal in different experiments which were carried out over many years by a variety of methods. Outcomes of such investigations obtained in the HADRON experiment using an X-ray emulsion chamber (XREC) as a core detector are considered. The Ne spectrum of EAS associated with γ-ray families, spectra of γ-rays (hadrons) in EAS cores and the Ne dependence of the muon number, ⟨Nμ⟩, in EAS with γ-ray families are obtained for the first time at energies of 1015–1017 eV with this method. A number of new effects were observed, namely, an abnormal scaling violation in hadron spectra which are fundamentally different from model predictions, an excess of muon number in EAS associated with γ-ray families, and the penetrating component in EAS cores. It is supposed that the abnormal behavior of γ-ray spectra and Ne dependence of the muon number are explained by the emergence of a penetrating component in the 1st PCR spectrum ‘knee’ range. Nuclear and astrophysical explanations of the origin of the penetrating component are discussed. The necessity of considering the contribution of a single close cosmic-ray source to explain the PCR spectrum in the knee range is noted

    Investigation of EAS cores

    No full text
    The development of nuclear-electromagnetic cascade models in air in the late forties have shown informational content of the study of cores of extensive air showers (EAS). These investigations were the main goal in different experiments which were carried out over many years by a variety of methods. Outcomes of such investigations obtained in the HADRON experiment using an X-ray emulsion chamber (XREC) as a core detector are considered. The Ne spectrum of EAS associated with γ-ray families, spectra of γ-rays (hadrons) in EAS cores and the Ne dependence of the muon number, ⟨Nμ⟩, in EAS with γ-ray families are obtained for the first time at energies of 1015–1017 eV with this method. A number of new effects were observed, namely, an abnormal scaling violation in hadron spectra which are fundamentally different from model predictions, an excess of muon number in EAS associated with γ-ray families, and the penetrating component in EAS cores. It is supposed that the abnormal behavior of γ-ray spectra and Ne dependence of the muon number are explained by the emergence of a penetrating component in the 1st PCR spectrum ‘knee’ range. Nuclear and astrophysical explanations of the origin of the penetrating component are discussed. The necessity of considering the contribution of a single close cosmic-ray source to explain the PCR spectrum in the knee range is noted

    Investigation of EAS cores

    No full text
    The development of nuclear-electromagnetic cascade models in air in the late forties have shown informational content of the study of cores of extensive air showers (EAS). These investigations were the main goal in different experiments which were carried out over many years by a variety of methods. Outcomes of such investigations obtained in the HADRON experiment using an X-ray emulsion chamber (XREC) as a core detector are considered. The Ne spectrum of EAS associated with γ-ray families, spectra of γ-rays (hadrons) in EAS cores and the Ne dependence of the muon number, ⟨Nμ⟩, in EAS with γ-ray families are obtained for the first time at energies of 1015–1017 eV with this method. A number of new effects were observed, namely, an abnormal scaling violation in hadron spectra which are fundamentally different from model predictions, an excess of muon number in EAS associated with γ-ray families, and the penetrating component in EAS cores. It is supposed that the abnormal behavior of γ-ray spectra and Ne dependence of the muon number are explained by the emergence of a penetrating component in the 1st PCR spectrum ‘knee’ range. Nuclear and astrophysical explanations of the origin of the penetrating component are discussed. The necessity of considering the contribution of a single close cosmic-ray source to explain the PCR spectrum in the knee range is noted

    Biogenesis and Function of Type IV Pili in Pseudomonas Species

    No full text
    corecore