23 research outputs found

    Emergence of Anti-Cancer Drug Resistance: Exploring the Importance of the Microenvironmental Niche via a Spatial Model

    Full text link
    Practically, all chemotherapeutic agents lead to drug resistance. Clinically, it is a challenge to determine whether resistance arises prior to, or as a result of, cancer therapy. Further, a number of different intracellular and microenvironmental factors have been correlated with the emergence of drug resistance. With the goal of better understanding drug resistance and its connection with the tumor microenvironment, we have developed a hybrid discrete-continuous mathematical model. In this model, cancer cells described through a particle-spring approach respond to dynamically changing oxygen and DNA damaging drug concentrations described through partial differential equations. We thoroughly explored the behavior of our self-calibrated model under the following common conditions: a fixed layout of the vasculature, an identical initial configuration of cancer cells, the same mechanism of drug action, and one mechanism of cellular response to the drug. We considered one set of simulations in which drug resistance existed prior to the start of treatment, and another set in which drug resistance is acquired in response to treatment. This allows us to compare how both kinds of resistance influence the spatial and temporal dynamics of the developing tumor, and its clonal diversity. We show that both pre-existing and acquired resistance can give rise to three biologically distinct parameter regimes: successful tumor eradication, reduced effectiveness of drug during the course of treatment (resistance), and complete treatment failure

    The evolution of language: a comparative review

    Get PDF
    For many years the evolution of language has been seen as a disreputable topic, mired in fanciful "just so stories" about language origins. However, in the last decade a new synthesis of modern linguistics, cognitive neuroscience and neo-Darwinian evolutionary theory has begun to make important contributions to our understanding of the biology and evolution of language. I review some of this recent progress, focusing on the value of the comparative method, which uses data from animal species to draw inferences about language evolution. Discussing speech first, I show how data concerning a wide variety of species, from monkeys to birds, can increase our understanding of the anatomical and neural mechanisms underlying human spoken language, and how bird and whale song provide insights into the ultimate evolutionary function of language. I discuss the ‘‘descended larynx’ ’ of humans, a peculiar adaptation for speech that has received much attention in the past, which despite earlier claims is not uniquely human. Then I will turn to the neural mechanisms underlying spoken language, pointing out the difficulties animals apparently experience in perceiving hierarchical structure in sounds, and stressing the importance of vocal imitation in the evolution of a spoken language. Turning to ultimate function, I suggest that communication among kin (especially between parents and offspring) played a crucial but neglected role in driving language evolution. Finally, I briefly discuss phylogeny, discussing hypotheses that offer plausible routes to human language from a non-linguistic chimp-like ancestor. I conclude that comparative data from living animals will be key to developing a richer, more interdisciplinary understanding of our most distinctively human trait: language

    Linear instability mechanisms for sand wave formation

    No full text
    this paper, we found a mechanism which leads to the choice of a finite wavelength in the pattern forming system. The main di#erence between our model and the model of Hulscher (1996) is that here, we drop the assumption that the turbulent boundary layer is a constant. Bottom morphology interacts with the tidal flow and changes its properties. The viscosity parameterization proposed in this work reflects the fact that the turbulent boundary layer has a horizontal structure induced by deformations of the bed. We discuss a class of models where the eddy viscosity is a functional of the depth and the velocity, and give a set of conditions on the functional which provide a damping mechanism for ultra--long waves. It turns out that this mechanism is present in the flow as long as the eddy viscosity is larger in the troughs and smaller over the crests of the bed perturbation. We give a simple graphical explanation of the processes that take place in the system and explain why the depth--dependent viscosity helps to suppress ultra-- long waves. We also construct a simple example of a functional which possesses the necessary properties for suppressing the long waves and perform a linear analysis of the Linear instability mechanisms for sand wave formation 3 Bed locatio

    Linear instability mechanisms for sand wave formation

    No full text

    Selective pressures for and against genetic instability in cancer: a time-dependent problem

    No full text
    Genetic instability in cancer is a two-edge sword. It can both increase the rate of cancer progression (by increasing the probability of cancerous mutations) and decrease the rate of cancer growth (by imposing a large death toll on dividing cells). Two of the many selective pressures acting upon a tumour, the need for variability and the need to minimize deleterious mutations, affect the tumour's ‘choice’ of a stable or unstable ‘strategy’. As cancer progresses, the balance of the two pressures will change. In this paper, we examine how the optimal strategy of cancerous cells is shaped by the changing selective pressures. We consider the two most common patterns in multistage carcinogenesis: the activation of an oncogene (a one-step process) and an inactivation of a tumour-suppressor gene (a two-step process). For these, we formulate an optimal control problem for the mutation rate in cancer cells. We then develop a method to find optimal time-dependent strategies. It turns out that for a wide range of parameters, the most successful strategy is to start with a high rate of mutations and then switch to stability. This agrees with the growing biological evidence that genetic instability, prevalent in early cancers, turns into stability later on in the progression. We also identify parameter regimes where it is advantageous to keep stable (or unstable) constantly throughout the growth

    Spatial invasion dynamics on random and unstructured meshes: Implications for heterogeneous tumor populations

    No full text
    In this work we discuss a spatial evolutionary model for a heterogeneous cancer cell population. We consider the gain-of-function mutations that not only change the fitness potential of the mutant phenotypes against normal background cells but may also increase the relative motility of the mutant cells. The spatial modeling is implemented as a stochastic evolutionary system on a structured grid (a lattice, with random neighborhoods, which is not necessarily bi-directional) or on a two dimensional unstructured mesh, i.e. a bi-directional graph with random numbers of neighbors. We present a computational approach to investigate the fixation probability of mutants in these spatial models. Additionally, we examine the effect of the migration potential on the spatial dynamics of mutants on unstructured meshes. Our results suggest that the probability of fixation is negatively correlated with the width of the distribution of the neighborhood size. Also, the fixation probability increases given a migration potential for mutants. We find that the fixation probability (of advantaged, disadvantaged and neutral mutants) on unstructured meshes is relatively smaller than the corresponding results on regular grids. More importantly, in the case of neutral mutants the introduction of a migration potential has a critical effect on the fixation probability and increases this by orders of magnitude. Further, we examine the effect of boundaries and as intuitively expected, the fixation probability is smaller on the boundary of regular grids when compared to its value in the bulk. Based on these computational results, we speculate on possible better therapeutic strategies that may delay tumor progression to some extent
    corecore