10 research outputs found
Rab27a Is an Essential Component of Melanosome Receptor for Myosin Va
Melanocytes that lack the GTPase Rab27a (ashen) are disabled in myosin Va-dependent melanosome capture because the association of the myosin with the melanosome surface depends on the presence of this resident melanosomal membrane protein. One interpretation of these observations is that Rab27a functions wholly or in part as the melanosome receptor for myosin Va (Myo5a). Herein, we show that the ability of the myosin Va tail domain to localize to the melanosome and generate a myosin Va null (dilute) phenotype in wild-type melanocytes is absolutely dependent on the presence of exon F, one of two alternatively spliced exons present in the tail of the melanocyte-spliced isoform of myosin Va but not the brain-spliced isoform. Exon D, the other melanocyte-specific tail exon, is not required. Similarly, the ability of full-length myosin Va to colocalize with melanosomes and to rescue their distribution in dilute melanocytes requires exon F but not exon D. These results predict that an interaction between myosin Va and Rab27a should be exon F dependent. Consistent with this, Rab27a present in detergent lysates of melanocytes binds to beads coated with purified, full-length melanocyte myosin Va and melanocyte myosin Va lacking exon D, but not to beads coated with melanocyte myosin Va lacking exon F or brain myosin Va. Moreover, the preparation of melanocyte lysates in the presence of GDP rather than guanosine-5′-O-(3-thio)triphosphate reduces the amount of Rab27a bound to melanocyte myosin Va-coated beads by approximately fourfold. Finally, pure Rab27a does not bind to myosin Va-coated beads, suggesting that these two proteins interact indirectly. Together, these results argue that Rab27a is an essential component of a protein complex that serves as the melanosome receptor for myosin Va, suggest that this complex contains at least one additional protein capable of bridging the indirect interaction between Rab27a and myosin Va, and imply that the recruitment of myosin Va to the melanosome surface in vivo should be regulated by factors controlling the nucleotide state of Rab27a
Endoplasmic Reticulum Dynamics, Inheritance, and Cytoskeletal Interactions in Budding Yeast
The endoplasmic reticulum (ER) in Saccharomyces cerevisiae consists of a reticulum underlying the plasma membrane (cortical ER) and ER associated with the nuclear envelope (nuclear ER). We used a Sec63p-green fluorescent protein fusion protein to study motility events associated with inheritance of cortical ER and nuclear ER in living yeast cells. During M phase before nuclear migration, we observed thick, apparently rigid tubular extensions emanating from the nuclear ER that elongate, undergo sweeping motions along the cell cortex, and shorten. Two findings support a role for microtubules in this process. First, extension of tubular structures from the nuclear ER is inhibited by destabilization of microtubules. Second, astral microtubules, structures that undergo similar patterns of extension, cortical surveillance and retraction, colocalize with nuclear ER extensions. During S and G(2) phases of the cell cycle, we observed anchorage of the cortical ER at the site of bud emergence and apical bud growth. Thin tubules of the ER that extend from the anchored cortical ER display undulating, apparently random movement and move into the bud as it grows. Finally, we found that cortical ER morphology is sensitive to a filamentous actin–destabilizing drug, latrunculin-A, and to mutations in the actin-encoding ACT1 gene. Our observations support 1) different mechanisms and cytoskeletal mediators for the inheritance of nuclear and cortical ER elements and 2) a mechanism for cortical ER inheritance that is cytoskeleton dependent but relies on anchorage, not directed movement
Genomic Screen for Vacuolar Protein Sorting Genes in Saccharomyces cerevisiae
The biosynthetic sorting of hydrolases to the yeast vacuole involves transport along two distinct routes referred to as the carboxypeptidase Y and alkaline phosphatase pathways. To identify genes involved in sorting to the vacuole, we conducted a genome-wide screen of 4653 homozygous diploid gene deletion strains of Saccharomyces cerevisiae for missorting of carboxypeptidase Y. We identified 146 mutant strains that secreted strong-to-moderate levels of carboxypeptidase Y. Of these, only 53 of the corresponding genes had been previously implicated in vacuolar protein sorting, whereas the remaining 93 had either been identified in screens for other cellular processes or were only known as hypothetical open reading frames. Among these 93 were genes encoding: 1) the Ras-like GTP-binding proteins Arl1p and Arl3p, 2) actin-related proteins such as Arp5p and Arp6p, 3) the monensin and brefeldin A hypersensitivity proteins Mon1p and Mon2p, and 4) 15 novel proteins designated Vps61p-Vps75p. Most of the novel gene products were involved only in the carboxypeptidase Y pathway, whereas a few, including Mon1p, Mon2p, Vps61p, and Vps67p, appeared to be involved in both the carboxypeptidase Y and alkaline phosphatase pathways. Mutants lacking some of the novel gene products, including Arp5p, Arp6p, Vps64p, and Vps67p, were severely defective in secretion of mature α-factor. Others, such as Vps61p, Vps64p, and Vps67p, displayed defects in the actin cytoskeleton at 30°C. The identification and phenotypic characterization of these novel mutants provide new insights into the mechanisms of vacuolar protein sorting, most notably the probable involvement of the actin cytoskeleton in this process