90 research outputs found

    Activation of NF- B protein prevents the transition from juvenile ovary to testis and promotes ovarian development in Zebrafish

    Get PDF
    Testis differentiation in zebrafish involves juvenile ovary to testis transformation initiated by an apoptotic wave. The molecular regulation of this transformation process is not fully understood. NF-κB is activated at an early stage of development and has been shown to interact with steroidogenic factor-1 in mammals, leading to the suppression of anti-Müllerian hormone (Amh) gene expression. Because steroidogenic factor-1 and Amh are important for proper testis development, NF-κB-mediated induction of anti-apoptotic genes could, therefore, also play a role in zebrafish gonad differentiation. The aim of this study was to examine the potential role of NF-κB in zebrafish gonad differentiation. Exposure of juvenile zebrafish to heat-killed Escherichia coli activated the NF-κB pathways and resulted in an increased ratio of females from 30 to 85%. Microarray and quantitative real-time-PCR analysis of gonads showed elevated expression of NF-κB-regulated genes. To confirm the involvement of NF-κB-induced anti-apoptotic effects, zebrafish were treated with sodium deoxycholate, a known inducer of NF-κB or NF-κB activation inhibitor (NAI). Sodium deoxycholate treatment mimicked the effect of heat-killed bacteria and resulted in an increased proportion of females from 25 to 45%, whereas the inhibition of NF-κB using NAI resulted in a decrease in females from 45 to 20%. This study provides proof for an essential role of NF-κB in gonadal differentiation of zebrafish and represents an important step toward the complete understanding of the complicated process of sex differentiation in this species and possibly other cyprinid teleosts as well

    Identifying the mechanisms underpinning recognition of structured sequences of action

    Get PDF
    © 2012 The Experimental Psychology SocietyWe present three experiments to identify the specific information sources that skilled participants use to make recognition judgements when presented with dynamic, structured stimuli. A group of less skilled participants acted as controls. In all experiments, participants were presented with filmed stimuli containing structured action sequences. In a subsequent recognition phase, participants were presented with new and previously seen stimuli and were required to make judgements as to whether or not each sequence had been presented earlier (or were edited versions of earlier sequences). In Experiment 1, skilled participants demonstrated superior sensitivity in recognition when viewing dynamic clips compared with static images and clips where the frames were presented in a nonsequential, randomized manner, implicating the importance of motion information when identifying familiar or unfamiliar sequences. In Experiment 2, we presented normal and mirror-reversed sequences in order to distort access to absolute motion information. Skilled participants demonstrated superior recognition sensitivity, but no significant differences were observed across viewing conditions, leading to the suggestion that skilled participants are more likely to extract relative rather than absolute motion when making such judgements. In Experiment 3, we manipulated relative motion information by occluding several display features for the duration of each film sequence. A significant decrement in performance was reported when centrally located features were occluded compared to those located in more peripheral positions. Findings indicate that skilled participants are particularly sensitive to relative motion information when attempting to identify familiarity in dynamic, visual displays involving interaction between numerous features

    A Computer-Assisted Uniqueness Proof for a Semilinear Elliptic Boundary Value Problem

    Full text link
    A wide variety of articles, starting with the famous paper (Gidas, Ni and Nirenberg in Commun. Math. Phys. 68, 209-243 (1979)) is devoted to the uniqueness question for the semilinear elliptic boundary value problem -{\Delta}u={\lambda}u+u^p in {\Omega}, u>0 in {\Omega}, u=0 on the boundary of {\Omega}, where {\lambda} ranges between 0 and the first Dirichlet Laplacian eigenvalue. So far, this question was settled in the case of {\Omega} being a ball and, for more general domains, in the case {\lambda}=0. In (McKenna et al. in J. Differ. Equ. 247, 2140-2162 (2009)), we proposed a computer-assisted approach to this uniqueness question, which indeed provided a proof in the case {\Omega}=(0,1)x(0,1), and p=2. Due to the high numerical complexity, we were not able in (McKenna et al. in J. Differ. Equ. 247, 2140-2162 (2009)) to treat higher values of p. Here, by a significant reduction of the complexity, we will prove uniqueness for the case p=3

    Detector for imaging and dosimetry of laser-driven epithermal neutrons by alpha conversion

    Get PDF
    An epithermal neutron imager based on detecting alpha particles created by boron neutron capture mechanism is discussed. The diagnostic mainly consists of a mm thick Boron Nitride (BN) sheet (as an alpha converter) in contact with a non-borated cellulose nitride film (LR115 type-II) detector. While the BN absorbs the neutrons below 0.1 eV, the fast neutrons register insignificantly in the detector due to their low neutron capture and recoil cross-sections. The use of solid-state nuclear track detectors (SSNTD), unlike image plates, micro-channel plates and scintillators, provide safeguard from the x-rays, gamma-rays and electrons. The diagnostic was tested on a proof-of-principle basis, in front of a laser driven source of moderated neutrons, which suggests the potential of using this diagnostic (BN+SSNTD) for dosimetry and imaging applications

    A search for neutral Higgs bosons in the MSSM and models with two scalar field doublets

    Get PDF
    A search is described for the neutral Higgs bosons h^0 and A^0 predicted by models with two scalar field doublets and, in particular, the Minimal Supersymmetric Standard Model (MSSM). The search in the Z^0 h^0 and h^0 A^0 production channels is based on data corresponding to an integrated luminosity of 25 pb^{-1} from e^+e^- collisions at centre-of-mass energies between 130 and 172GeV collected with the OPAL detector at LEP. The observation of a number of candidates consistent with Standard Model background expectations is used in combination with earlier results from data collected at the Z^0 resonance to set limits on m_h and m_A in general models with two scalar field doublets and in the MSSM. For example, in the MSSM, for tan(beta) > 1, minimal and maximal scalar top quark mixing and soft SUSY-breaking masses of 1 TeV, the 95% confidence level limits m_h > 59.0 GeV and m_A > 59.5 GeV are obtained. For the first time, the MSSM parameter space is explored in a detailed scan.A search is described for the neutral Higgs bosons h^0 and A^0 predicted by models with two scalar field doublets and, in particular, the Minimal Supersymmetric Standard Model (MSSM). The search in the Z^0 h^0 and h^0 A^0 production channels is based on data corresponding to an integrated luminosity of 25 pb^{-1} from e^+e^- collisions at centre-of-mass energies between 130 and 172 GeV collected with the OPAL detector at LEP. The observation of a number of candidates consistent with Standard Model background expectations is used in combination with earlier results from data collected at the Z^0 resonance to set limits on m_h and m_A in general models with two scalar field doublets and in the MSSM. For example, in the MSSM, for tan(beta) > 1, minimal and maximal scalar top quark mixing and soft SUSY-breaking masses of 1 TeV, the 95% confidence level limits m_h > 59.0 GeV and m_A > 59.5 GeV are obtained. For the first time, the MSSM parameter space is explored in a detailed scan

    Spin alignment of leading K(892)0K^{*}(892)^{0} mesons in hadronic Z0Z^0 decays

    Get PDF
    Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K ∗ (892) 0 mesons from hadronic Z 0 decays have been measured over the full range of K ∗ 0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x p values above 0.3, with the matrix element ϱ 00 rising to 0.66 ± 0.11 for x p > 0.7. The values of the real part of the off-diagonal element ϱ 1 - 1 are negative at large x p , with a weighted average value of −0.09 ± 0.03 for x p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the q q system from the Z 0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x p range. The K ∗ 0 fragmentation function has also been measured and the total rate determined to be 0.74 ± 0.02 ± 0.02 K ∗ (892) 0 mesons per hadronic Z 0 decay

    The Physics of the B Factories

    Get PDF

    Individual variation and the endocrine regulation of behaviour and physiology in birds: a cellular/molecular perspective.

    Full text link
    Investigations of the cellular and molecular mechanisms of physiology and behaviour have generally avoided attempts to explain individual differences. The goal has rather been to discover general processes. However, understanding the causes of individual variation in many phenomena of interest to avian eco-physiologists will require a consideration of such mechanisms. For example, in birds, changes in plasma concentrations of steroid hormones are important in the activation of social behaviours related to reproduction and aggression. Attempts to explain individual variation in these behaviours as a function of variation in plasma hormone concentrations have generally failed. Cellular variables related to the effectiveness of steroid hormone have been useful in some cases. Steroid hormone target sensitivity can be affected by variables such as metabolizing enzyme activity, hormone receptor expression as well as receptor cofactor expression. At present, no general theory has emerged that might provide a clear guidance when trying to explain individual variability in birds or in any other group of vertebrates. One strategy is to learn from studies of large units of intraspecific variation such as population or sex differences to provide ideas about variables that might be important in explaining individual variation. This approach along with the use of newly developed molecular genetic tools represents a promising avenue for avian eco-physiologists to pursue
    corecore