9 research outputs found

    Enteric neurons from Parkinson's disease patients display ex vivo aberrations in mitochondrial structure

    Get PDF
    Contains fulltext : 172471.pdf (publisher's version ) (Open Access)Based on autopsy material mitochondrial dysfunction has been proposed being part of the pathophysiological cascade of Parkinson's disease (PD). However, in living patients, evidence for such dysfunction is scarce. As the disease presumably starts at the enteric level, we studied ganglionic and mitochondrial morphometrics of enteric neurons. We compared 65 ganglia from 11 PD patients without intestinal symptoms and 41 ganglia from 4 age-matched control subjects. We found that colon ganglia from PD patients had smaller volume, contained significantly more mitochondria per ganglion volume, and displayed a higher total mitochondrial mass relative to controls. This suggests involvement of mitochondrial dysfunction in PD at the enteric level. Moreover, in PD patients the mean mitochondrial volume declined in parallel with motor performance. Ganglionic shrinking was evident in the right but not in the left colon. In contrast, mitochondrial changes prevailed in the left colon suggesting that a compensatory increase in mitochondrial mass might counterbalance mitochondrial dysfunction in the left colon but not in the right colon. Reduction in ganglia volume and combined mitochondrial morphometrics had both predictive power to discriminate between PD patients and control subjects, suggesting that both parameters could be used for early discrimination between PD patients and healthy individuals

    Fibroblast mitochondria in idiopathic Parkinson’s disease display morphological changes and enhanced resistance to depolarization

    No full text
    Mitochondrial dysfunction is a hallmark in idiopathic Parkinson’s disease (IPD). Here, we established screenable phenotypes of mitochondrial morphology and function in primary fibroblasts derived from patients with IPD. Upper arm punch skin biopsy was performed in 41 patients with mid-stage IPD and 21 age-matched healthy controls. At the single-cell level, the basal mitochondrial membrane potential (Ψm) was higher in patients with IPD than in controls. Similarly, under carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) stress, the remaining Ψm was increased in patients with IPD. Analysis of mitochondrial morphometric parameters revealed significantly decreased mitochondrial connectivity in patients with IPD, with 9 of 14 morphometric mitochondrial parameters differing from those in controls. Significant morphometric mitochondrial changes included the node degree, mean volume, skeleton size, perimeter, form factor, node count, erosion body count, endpoints, and mitochondria count (all P-values < 0.05). These functional data reveal that resistance to depolarization was increased by treatment with the protonophore FCCP in patients with IPD, whereas morphometric data revealed decreased mitochondrial connectivity and increased mitochondrial fragmentation

    Stem cells in stroke treatment: the promise and the challenges

    No full text
    Stroke, for some years now the neglected major indication in the pharmaceutical development cupboard, has recently become one of the hot areas for stem cell therapy development. This is driven by better understanding of potential therapeutic opportunities both in the acute and chronic phases and the launch of a series of new early phase clinical trials in a number of countries, driven by positive data in relevant animal models. In addition, the impetus for stem cell product development is motivated by patient demand, with thousands of victims seeking unproven treatments abroad. This article looks at the many challenges facing the development of a stem cell therapy for stroke. These range from product characterization and banking, through nonclinical safety and efficacy to the regulatory requirements for starting patient trials and beyond to maximizing value from carefully designed efficacy trials
    corecore