19 research outputs found

    Bioluminescence in marine copepods

    No full text
    Available from British Library Document Supply Centre- DSC:DX91084 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    Excitatory inputs to spiny cells in layers 4 and 6 of cat striate cortex.

    No full text
    The principal target of lateral geniculate nucleus in the cat visual cortex is the stellate neurons of layer 4. In previously reported work with intracellular recording and extracellular stimulation in slices of visual cortex, three general classes of fast excitatory synaptic potentials (EPSPs) in layer 4a spiny stellate neurons were identified. One of these classes, characterized by large and relatively invariant amplitudes (mean 1.7 mV, average coefficient of variation (CV) 0.083) were attributed to the action of geniculate axons because, unlike the other two classes, they could not be matched by intracortical inputs, using paired recording. We have examined in detail the properties of this synaptic input in twelve examples, selecting for study those EPSPs where there was secure extracellular stimulation of the single fibre input to a pair of stimuli 50 ms apart. In our analysis, we conclude that the depression that these inputs show to the second stimulus is entirely postsynaptic, since the evidence strongly suggests that the probability of transmitter release at the synaptic site(s) remains 1.0 for both stimuli. We argue that the most plausible explanation for this postsynaptic depression is a reduction in the average probability of opening the synaptic channels. Using a simple biochemical analysis (c.f. Sigworth plot), it is then possible to calculate the number of synaptic channels and their probability of opening, for each of the 12 connections. The EPSPs had a mean amplitude of 1.91 mV (+/- 1.3 mV SD) and a mean CV of 0.067 (+/- 0.022). The calculated number of channels ranged from 20 to 158 (59.4 +/- 48.7) and their probability of opening to the first EPSP had an average of 0.83 (+/- 0.09), with an average depression of the probability to 0.60 for the second EPSP. Geniculate afferents also terminate in layer 6. Intracellular recordings were also made in the upper part of this layer and a total of 51 EPSPs were recorded from pyramidal cells of three principal types. Amongst this dataset we sought EPSPs with similar properties to those characterized in layer 4a. Three examples were found, which is a much lower percentage (6%) than the incidence of putative geniculate EPSPs found in layer 4a (42%)

    Changes in airway configuration with different head and neck positions using magnetic resonance imaging of normal airways: a new concept with possible clinical applications

    No full text
    Background. The sniffing position is often considered optimal for direct laryngoscopy. Another concept of airway configuration involving a laryngeal vestibule axis and two curves has also been suggested. We investigated whether this theory can be supported mathematically and if it supports the sniffing position as being optimal for direct laryngoscopy. Methods. Magnetic resonance imaging scans were performed in 42 normal adult volunteers. The airway passage was divided into two curves - primary (oro-pharyngeal curve) and secondary (pharyngo-glotto-tracheal curve). Airway configuration was evaluated in the neutral, extension, head lift, and sniffing positions. The airway passage, point of inflection (where the two curves meet), its tangent, and the line of sight were plotted on each scan. Results. The point of inflection lay within the laryngeal vestibule in all positions. The head lift and sniffing positions caused the tangent to the point of inflection to approximate the horizontal plane. The sniffing, extension, and head lift positions caused a reduction in the area between the line of sight and the airway curve compared with the neutral position. Conclusions. A two-curve theory is proposed as a basis for explaining airway configuration. The changes in these curves with head and neck positioning support the sniffing position as optimal for direct laryngoscopy. Application of this new concept to other forms of laryngoscopy should be investigated. © 2010 The Author. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved
    corecore