4 research outputs found

    Hidden Quantum Critical Point in a Ferromagnetic Superconductor

    Full text link
    We consider a coexistence phase of both Ferromagnetism and superconductivity and solve the self-consistent mean-field equations at zero temperature. The superconducting gap is shown to vanish at the Stoner point whereas the magnetization doesn't. This indicates that the para-Ferro quantum critical point becomes a hidden critical point. The effective mass in such a phase gets enhanced whereas the spin wave stiffness is reduced as compared to the pure FM phase. The spin wave stiffness remains finite even at the para-Ferro quantum critical point.Comment: 4 pages, Phys. Rev. B (Rapid) accepte

    Dilatometry study of the ferromagnetic order in single-crystalline URhGe

    Full text link
    Thermal expansion measurements have been carried out on single-crystalline URhGe in the temperature range from 2 to 200 K. At the ferromagnetic transition (Curie temperature T_C = 9.7 K), the coefficients of linear thermal expansion along the three principal orthorhombic axes all exhibit pronounced positive peaks. This implies that the uniaxial pressure dependencies of the Curie temperature, determined by the Ehrenfest relation, are all positive. Consequently, the calculated hydrostatic pressure dependence dT_C/dp is positive and amounts to 0.12 K/kbar. In addition, the effective Gruneisen parameter was determined. The low-temperature electronic Gruneisen parameter \Gamma_{sf} = 14 indicates an enhanced volume dependence of the ferromagnetic spin fluctuations at low temperatures. Moreover, the volume dependencies of the energy scales for ferromagnetic order and ferromagnetic spin fluctuations were found to be identical.Comment: 5 page
    corecore