11 research outputs found

    Microbial epidemiology and clinical risk factors of carbapenemase-producing Enterobacterales amongst Irish patients from first detection in 2009 until 2020

    No full text
    BackgroundCarbapenemase producing Enterobacterales (CPE) are major public health threats.AimTo review microbial epidemiology of CPE, as well as clinical risk factors and infections, amongst CPE positive patients over 12 years in an Irish tertiary hospital.MethodsRetrospective observational study of data extracted from a laboratory CPE database, electronic healthcare records and manual review of patient charts. Common risk factors, treatment regimens for all CPE related infections, and clinical outcomes were ascertained.FindingsAmong CPE strains isolated from 460 patients, Klebsiella pneumoniae carbapenemase (KPC) was the carbapenemase most frequently detected, accounting for 87.4% (459) of all CPE enzymes. Citrobacter species 177 (33.7%) were the most common species harbouring this enzyme. 428 CPE positive patients (93%) were identified in the acute hospital setting; the most common risk factor for CPE acquisition was history of hospitalisation, observed in 305 (66%) cases. Thirty patients (6.5%) had confirmed infections post-acquisition, of which four were bloodstream infections. There were 19 subsequent episodes of non CPE-related bacteraemia in this cohort. All causal mortality at 30 days was 41 patients (8.9%). However, clinical review determined that CPE was an indirect associative factor in 8 patient deaths.ConclusionsIn this tertiary hospital setting, microbial epidemiology is changing; with both OXA-48 enzymes and KPC-producing Citrobacter species becoming more prevalent. Whilst the burden of CPE related infections, especially bacteraemia, was low over the study period, it remains critical that basic infection prevention and control practices are adhered to lest the observed changes in epidemiology result in an increase in clinical manifestations.</p

    Specialized cleaning associated with antimicrobial coatings for reduction of hospital-acquired infection: opinion of the COST Action Network AMiCI (CA15114)

    No full text
    Recognized issues with poor hand hygiene compliance among healthcare workers and reports of recontamination of previously chemically disinfected surfaces through hand contact emphasize the need for novel hygiene methods in addition to those currently available. One such approach involves antimicrobial (nano) coatings (AMCs), whereby integrated active ingredients are responsible for elimination of micro-organisms that come into contact with treated surfaces. While widely studied under laboratory conditions with promising results, studies under real-life healthcare conditions are scarce. The views of 75 contributors from 30 European countries were collated regarding specialized cleaning associated with AMCs for reduction of healthcare-associated infection. There was unanimous agreement that generation of scientific guidelines for cleaning of AMCs, using traditional or new processes, is needed. Specific topics included: understanding mechanisms of action of cleaning materials and their physical interactions with conventional coatings and AMCs; that assessments mimic the life cycle of coatings to determine the impact of repetitive cleaning and other aspects of ageing (e.g. exposure to sunlight); determining concentrations of AMC-derived biocides in effluents; and development of effective de-activation and sterilization treatments for cleaning effluents. Further, the consensus opinion was that, prior to widespread implementation of AMCs, there is a need for clarification of the varying responsibilities of involved clinical, healthcare management, cleaning services and environmental safety stakeholders.</p

    Specialized cleaning associated with antimicrobial coatings for reduction of hospital-acquired infection: opinion of the COST Action Network AMiCI (CA15114)

    No full text
    Recognized issues with poor hand hygiene compliance among healthcare workers and reports of recontamination of previously chemically disinfected surfaces through hand contact emphasize the need for novel hygiene methods in addition to those currently available. One such approach involves antimicrobial (nano) coatings (AMCs), whereby integrated active ingredients are responsible for elimination of micro-organisms that come into contact with treated surfaces. While widely studied under laboratory conditions with promising results, studies under real-life healthcare conditions are scarce. The views of 75 contributors from 30 European countries were collated regarding specialized cleaning associated with AMCs for reduction of healthcare-associated infection. There was unanimous agreement that generation of scientific guidelines for cleaning of AMCs, using traditional or new processes, is needed. Specific topics included: understanding mechanisms of action of cleaning materials and their physical interactions with conventional coatings and AMCs; that assessments mimic the life cycle of coatings to determine the impact of repetitive cleaning and other aspects of ageing (e.g. exposure to sunlight); determining concentrations of AMC-derived biocides in effluents; and development of effective de-activation and sterilization treatments for cleaning effluents. Further, the consensus opinion was that, prior to widespread implementation of AMCs, there is a need for clarification of the varying responsibilities of involved clinical, healthcare management, cleaning services and environmental safety stakeholders.</p
    corecore