36 research outputs found
Optimal quantum control in nanostructures: Theory and application to generic three-level system
Coherent carrier control in quantum nanostructures is studied within the
framework of Optimal Control. We develop a general solution scheme for the
optimization of an external control (e.g., lasers pulses), which allows to
channel the system's wavefunction between two given states in its most
efficient way; physically motivated constraints, such as limited laser
resources or population suppression of certain states, can be accounted for
through a general cost functional. Using a generic three-level scheme for the
quantum system, we demonstrate the applicability of our approach and identify
the pertinent calculation and convergence parameters.Comment: 7 pages; to appear in Phys. Rev.
Quantum entanglement and information processing via excitons in optically-driven quantum dots
We show how optically-driven coupled quantum dots can be used to prepare
maximally entangled Bell and Greenberger-Horne-Zeilinger states. Manipulation
of the strength and duration of the selective light-pulses needed for producing
these highly entangled states provides us with crucial elements for the
processing of solid-state based quantum information. Theoretical predictions
suggest that several hundred single quantum bit rotations and Controlled-Not
gates could be performed before decoherence of the excitonic states takes
place.Comment: 3 separate PostScript Figures + 7 pages. Typos corrected. Minor
changes added. This updated version is to appear in PR
Quantum Entanglement of Excitons in Coupled Quantum Dots
Optically-controlled exciton dynamics in coupled quantum dots is studied. We
show that the maximally entangled Bell states and Greenberger-Horne-Zeilinger
(GHZ) states can be robustly generated by manipulating the system parameters to
be at the avoided crossings in the eigenenergy spectrum. The analysis of
population transfer is systematically carried out using a dressed-state
picture. In addition to the quantum dot configuration that have been discussed
by Quiroga and Johnson [Phys. Rev. Lett. \QTR{bf}{83}, 2270 (1999)], we show
that the GHZ states also may be produced in a ray of three quantum dots with a
shorter generation time.Comment: 16 pages, 7 figures, to appear in Phys. Rev.
Spin-based quantum information processing with semiconductor quantum dots and cavity QED
A quantum information processing scheme is proposed with semiconductor
quantum dots located in a high-Q single mode QED cavity. The spin degrees of
freedom of one excess conduction electron of the quantum dots are employed as
qubits. Excitonic states, which can be produced ultrafastly with optical
operation, are used as auxiliary states in the realization of quantum gates. We
show how properly tailored ultrafast laser pulses and Pauli-blocking effects,
can be used to achieve a universal encoded quantum computing.Comment: RevTex, 2 figure
Adiabatic steering and determination of dephasing rates in double dot qubits
We propose a scheme to prepare arbitrary superpositions of quantum states in
double quantum--dots irradiated by coherent microwave pulses. Solving the
equations of motion for the dot density matrix, we find that dephasing rates
for such superpositions can be quantitatively infered from additional electron
current pulses that appear due to a controllable breakdown of coherent
population trapping in the dots.Comment: 5 pages, 4 figures. To appear in Phys. Rev.
Exploiting exciton-exciton interactions in semiconductor quantum dots for quantum-information processing
We propose an all-optical implementation of quantum-information processing in
semiconductor quantum dots, where electron-hole excitations (excitons) serve as
the computational degrees of freedom (qubits). We show that the strong dot
confinement leads to an overall enhancement of Coulomb correlations and to a
strong renormalization of the excitonic states, which can be exploited for
performing conditional and unconditional qubit operations.Comment: 5 pages revtex, 2 encapsulated postscript figures. Accepted for
publication in Phys. Rev. B (Rapid Communication
Optically Driven Qubits in Artificial Molecules
We present novel models of quantum gates based on coupled quantum dots in
which a qubit is regarded as the superposition of ground states in each dot.
Coherent control on the qubit is performed by both a frequency and a
polarization of a monochromatic light pulse illuminated on the quantum dots. We
also show that a simple combination of two single qubit gates functions as a
controlled NOT gate resulting from an electron-electron interaction. To examine
the decoherence of quantum states, we discuss electronic relaxation contributed
mainly by LA phonon processes.Comment: 11 pages, 4 figures, submitted to Physical Review
Experimental realization of the one qubit Deutsch-Jozsa algorithm in a quantum dot
We perform quantum interference experiments on a single self-assembled
semiconductor quantum dot. The presence or absence of a single exciton in the
dot provides a qubit that we control with femtosecond time resolution. We
combine a set of quantum operations to realize the single-qubit Deutsch-Jozsa
algorithm. The results show the feasibility of single qubit quantum logic in a
semiconductor quantum dot using ultrafast optical control.Comment: REVTex4, 4 pages, 3 figures. Now includes more details about the
dephasing in the quantum dots. The introduction has been reworded for
clarity. Minor readability fixe
Size-dependent decoherence of excitonic states in semiconductor microcrystallites
The size-dependent decoherence of the exciton states resulting from the
spontaneous emission is investigated in a semiconductor spherical
microcrystallite under condition . In general, the
larger size of the microcrystallite corresponds to the shorter coherence time.
If the initial state is a superposition of two different excitonic coherent
states, the coherence time depends on both the overlap of two excitonic
coherent states and the size of the microcrystallite. When the system with
fixed size is initially in the even or odd coherent states, the larger average
number of the excitons corresponds to the faster decoherence. When the average
number of the excitons is given, the bigger size of the microcrystallite
corresponds to the faster decoherence. The decoherence of the exciton states
for the materials GaAs and CdS is numerically studied by our theoretical
analysis.Comment: 4 pages, two figure
Single Spin Measurement using Single Electron Transistors to Probe Two Electron Systems
We present a method for measuring single spins embedded in a solid by probing
two electron systems with a single electron transistor (SET). Restrictions
imposed by the Pauli Principle on allowed two electron states mean that the
spin state of such systems has a profound impact on the orbital states
(positions) of the electrons, a parameter which SET's are extremely well suited
to measure. We focus on a particular system capable of being fabricated with
current technology: a Te double donor in Si adjacent to a Si/SiO2 interface and
lying directly beneath the SET island electrode, and we outline a measurement
strategy capable of resolving single electron and nuclear spins in this system.
We discuss the limitations of the measurement imposed by spin scattering
arising from fluctuations emanating from the SET and from lattice phonons. We
conclude that measurement of single spins, a necessary requirement for several
proposed quantum computer architectures, is feasible in Si using this strategy.Comment: 22 Pages, 8 Figures; revised version contains updated references and
small textual changes. Submitted to Phys. Rev.