6 research outputs found

    Nonleg venous thrombosis in critically Ill adults a nested prospective cohort study

    No full text
    Importance Critically ill patients are at risk of venous thrombosis, and therefore guidelines recommend daily thromboprophylaxis. Deep vein thrombosis (DVT) commonly occurs in the lower extremities but can occur in other sites including the head and neck, trunk, and upper extremities. The risk of nonleg deep venous thromboses (NLDVTs), predisposing factors, and the association between NLDVTs and pulmonary embolism (PE) or death are unclear.Objective To describe the frequency, anatomical location, risk factors, management, and consequences of NLDVTs in a large cohort of medical-surgical critically ill adults.Design, Setting, and Participants A nested prospective cohort study in the setting of secondary and tertiary care intensive care units (ICUs). The study population comprised 3746 patients, who were expected to remain in the ICU for at least 3 days and were enrolled in a randomized clinical trial of dalteparin vs standard heparin for thromboprophylaxis.Main Outcomes and Measures The proportion of patients who had NLDVTs, the mean number per patient, and the anatomical location. We characterized NLDVTs as prevalent or incident (identified within 72 hours of ICU admission or thereafter) and whether they were catheter related or not. We used multivariable regression models to evaluate risk factors for NLDVT and to examine subsequent anticoagulant therapy, associated PE, and death.Results Of 3746 trial patients, 84 (2.2%) developed 1 or more non–leg vein thromboses (superficial or deep, proximal or distal). Thromboses were more commonly incident (n = 75 [2.0%]) than prevalent (n = 9 [0.2%]) (P < .001) and more often deep (n = 67 [1.8%]) than superficial (n = 31 [0.8%]) (P < .001). Cancer was the only independent predictor of incident NLDVT (hazard ratio [HR], 2.22; 95% CI, 1.06-4.65). After adjusting for Acute Physiology and Chronic Health Evaluation (APACHE) II scores, personal or family history of venous thromboembolism, body mass index, vasopressor use, type of thromboprophylaxis, and presence of leg DVT, NLDVTs were associated with an increased risk of PE (HR, 11.83; 95% CI, 4.80-29.18). Nonleg DVTs were not associated with ICU mortality (HR, 1.09; 95% CI, 0.62-1.92) in a model adjusting for age, APACHE II, vasopressor use, mechanical ventilation, renal replacement therapy, and platelet count below 50 × 109/L.Conclusions and Relevance Despite universal heparin thromboprophylaxis, nonleg thromboses are found in 2.2% of medical-surgical critically ill patients, primarily in deep veins and proximal veins. Patients who have a malignant condition may have a significantly higher risk of developing NLDVT, and patients with NLDVT, compared with those without, appeared to be at higher risk of PE but not higher risk of death.Trial Registration clinicaltrials.gov Identifier: NCT0018214

    Ventilator-associated lung Injury

    No full text
    Since its introduction into clinical practice as life-sustaining therapy in the polio epidemic, mechanical ventilation has proved to be an important tool for the treatment of the respiratory failure. One of the main reasons for a patient's admission into the intensive care unit (ICU) is to receive ventilator support [1]. According to a recent review by Esteban and co-workers [2], 66% of patients who require mechanical ventilation suffer from acute respiratory failure, including acute respiratory distress syndrome (ARDS), heart failure, pneumonia, sepsis, complications of surgery and trauma. The remaining indications include coma (15%), acute exacerbation of chronic obstructive pulmonary disease (13%) and neuromuscular disorders (5%). The aims of mechanical ventilation are primarily to decrease the work of breathing and to reverse life-threatening hypoxaemia or acute progressive respiratory acidosis. However, over the last two decades, research in a number of animal models has shown that mechanical ventilation itself can produce acute lung injury (ALI) [3]. The classical form of iatrogenic lung injury, recognised clinically for many decades, is the well-known barotrauma, defined as radiological evidence of extra-alveolar air [4]. The extraalveolar accumulation of air has several manifestations, of which the most threatening is tension pneumothorax. \ua9 2008 Springer-Verlag Italia

    Understanding the Mechanism of Ventilator-Induced Lung Injury

    No full text
    corecore