6 research outputs found

    SU(3) Flux Tubes in a Model of the stochastic Vacuum

    Full text link
    We calculate the squared gluon field strengths of a heavy q-qˉ\rm \bar{q}-pair in the model of the stochastic vacuum. We observe that with increasing separation a chromoelectric flux tube is built. The properties of the emerging flux tube are investigated.Comment: 14, epsf, HD-THEP-94-3

    Abelian Magnetic Monopole Dominance in Quark Confinement

    Get PDF
    We prove Abelian magnetic monopole dominance in the string tension of QCD. Abelian and monopole dominance in low energy physics of QCD has been confirmed for various quantities by recent Monte Carlo simulations of lattice gauge theory. In order to prove this dominance, we use the reformulation of continuum Yang-Mills theory in the maximal Abelian gauge as a deformation of a topological field theory of magnetic monopoles, which was proposed in the previous article by the author. This reformulation provides an efficient way for incorporating the magnetic monopole configuration as a topological non-trivial configuration in the functional integral. We derive a version of the non-Abelian Stokes theorem and use it to estimate the expectation value of the Wilson loop. This clearly exhibits the role played by the magnetic monopole as an origin of the Berry phase in the calculation of the Wilson loop in the manifestly gauge invariant manner. We show that the string tension derived from the diagonal (abelian) Wilson loop in the topological field theory (studied in the previous article) converges to that of the full non-Abelian Wilson loop in the limit of large Wilson loop. Therefore, within the above reformulation of QCD, this result (together with the previous result) completes the proof of quark confinement in QCD based on the criterion of the area law of the full non-Abelian Wilson loop.Comment: 33 pages, Latex, no figures, version accepted for publication in Phys. Rev. D (additions of sec. 4.5 and references, and minor changes

    Decomposition of the QCD String into Dipoles and Unintegrated Gluon Distributions

    Get PDF
    We present the perturbative and non-perturbative QCD structure of the dipole-dipole scattering amplitude in momentum space. The perturbative contribution is described by two-gluon exchange and the non-perturbative contribution by the stochastic vacuum model which leads to confinement of the quark and antiquark in the dipole via a string of color fields. This QCD string gives important non-perturbative contributions to high-energy reactions. A new structure different from the perturbative dipole factors is found in the string-string scattering amplitude. The string can be represented as an integral over stringless dipoles with a given dipole number density. This decomposition of the QCD string into dipoles allows us to calculate the unintegrated gluon distribution of hadrons and photons from the dipole-hadron and dipole-photon cross section via kT-factorization.Comment: 43 pages, 14 figure

    Non-Perturbative QCD Treatment of High-Energy Hadron-Hadron Scattering

    Full text link
    Total cross-sections and logarithmic slopes of the elastic scattering cross-sections for different hadronic processes are calculated in the framework of the model of the stochastic vacuum. The relevant parameters of this model, a correlation length and the gluon condensate, are determined from scattering data, and found to be in very good agreement with values coming from completely different sources of information. A parameter-free relation is given between total cross-sections and slope parameters, which is shown to be remarkably valid up to the highest energies for which data exist.Comment: 60 pages, Heidelberg preprin

    Confining QCD Strings, Casimir Scaling, and a Euclidean Approach to High-Energy Scattering

    Get PDF
    We compute the chromo-field distributions of static color-dipoles in the fundamental and adjoint representation of SU(Nc) in the loop-loop correlation model and find Casimir scaling in agreement with recent lattice results. Our model combines perturbative gluon exchange with the non-perturbative stochastic vacuum model which leads to confinement of the color-charges in the dipole via a string of color-fields. We compute the energy stored in the confining string and use low-energy theorems to show consistency with the static quark-antiquark potential. We generalize Meggiolaro's analytic continuation from parton-parton to gauge-invariant dipole-dipole scattering and obtain a Euclidean approach to high-energy scattering that allows us in principle to calculate S-matrix elements directly in lattice simulations of QCD. We apply this approach and compute the S-matrix element for high-energy dipole-dipole scattering with the presented Euclidean loop-loop correlation model. The result confirms the analytic continuation of the gluon field strength correlator used in all earlier applications of the stochastic vacuum model to high-energy scattering.Comment: 65 pages, 13 figures, extended and revised version to be published in Phys. Rev. D (results unchanged, 2 new figures, 1 new table, additional discussions in Sec.2.3 and Sec.5, new appendix on the non-Abelian Stokes theorem, old Appendix A -> Sec.3, several references added

    Global Impact of the COVID-19 Pandemic on Stroke Volumes and Cerebrovascular Events: One-Year Follow-up.

    No full text
    Declines in stroke admission, intravenous thrombolysis, and mechanical thrombectomy volumes were reported during the first wave of the COVID-19 pandemic. There is a paucity of data on the longer-term effect of the pandemic on stroke volumes over the course of a year and through the second wave of the pandemic. We sought to measure the impact of the COVID-19 pandemic on the volumes of stroke admissions, intracranial hemorrhage (ICH), intravenous thrombolysis (IVT), and mechanical thrombectomy over a one-year period at the onset of the pandemic (March 1, 2020, to February 28, 2021) compared with the immediately preceding year (March 1, 2019, to February 29, 2020). We conducted a longitudinal retrospective study across 6 continents, 56 countries, and 275 stroke centers. We collected volume data for COVID-19 admissions and 4 stroke metrics: ischemic stroke admissions, ICH admissions, intravenous thrombolysis treatments, and mechanical thrombectomy procedures. Diagnoses were identified by their ICD-10 codes or classifications in stroke databases. There were 148,895 stroke admissions in the one-year immediately before compared to 138,453 admissions during the one-year pandemic, representing a 7% decline (95% confidence interval [95% CI 7.1, 6.9]; p<0.0001). ICH volumes declined from 29,585 to 28,156 (4.8%, [5.1, 4.6]; p<0.0001) and IVT volume from 24,584 to 23,077 (6.1%, [6.4, 5.8]; p<0.0001). Larger declines were observed at high volume compared to low volume centers (all p<0.0001). There was no significant change in mechanical thrombectomy volumes (0.7%, [0.6,0.9]; p=0.49). Stroke was diagnosed in 1.3% [1.31,1.38] of 406,792 COVID-19 hospitalizations. SARS-CoV-2 infection was present in 2.9% ([2.82,2.97], 5,656/195,539) of all stroke hospitalizations. There was a global decline and shift to lower volume centers of stroke admission volumes, ICH volumes, and IVT volumes during the 1st year of the COVID-19 pandemic compared to the prior year. Mechanical thrombectomy volumes were preserved. These results suggest preservation in the stroke care of higher severity of disease through the first pandemic year. This study is registered under NCT04934020
    corecore