58 research outputs found
Accurate simulation estimates of phase behaviour in ternary mixtures with prescribed composition
This paper describes an isobaric semi-grand canonical ensemble Monte Carlo
scheme for the accurate study of phase behaviour in ternary fluid mixtures
under the experimentally relevant conditions of prescribed pressure,
temperature and overall composition. It is shown how to tune the relative
chemical potentials of the individual components to target some requisite
overall composition and how, in regions of phase coexistence, to extract
accurate estimates for the compositions and phase fractions of individual
coexisting phases. The method is illustrated by tracking a path through the
composition space of a model ternary Lennard-Jones mixture.Comment: 6 pages, 3 figure
Continuous demixing at liquid-vapor coexistence in a symmetrical binary fluid mixture
We report a Monte Carlo finite-size scaling study of the demixing transition
of a symmetrical Lennard-Jones binary fluid mixture. For equal concentration of
species, and for a choice of the unlike-to-like interaction ratio delta=0.7,
this transition is found to be continuous at liquid-vapor coexistence. The
associated critical end point exhibits Ising-like universality. These findings
confirm those of earlier smaller scale simulation studies of the same model,
but contradict the findings of recent integral equation and hierarchical
reference theory investigations.Comment: 7 pages, 6 figure
Critical Point Field Mixing in an Asymmetric Lattice Gas Model
The field mixing that manifests broken particle-hole symmetry is studied for
a 2-D asymmetric lattice gas model having tunable field mixing properties.
Monte Carlo simulations within the grand canonical ensemble are used to obtain
the critical density distribution for different degrees of particle-hole
asymmetry. Except in the special case when this asymmetry vanishes, the density
distributions exhibit an antisymmetric correction to the limiting
scale-invariant form. The presence of this correction reflects the mixing of
the critical energy density into the ordering operator. Its functional form is
found to be in excellent agreement with that predicted by the mixed-field
finite-size-scaling theory of Bruce and Wilding. A computational procedure for
measuring the significant field mixing parameter is also described, and its
accuracy gauged by comparing the results with exact values obtained
analytically.Comment: 10 Pages, LaTeX + 8 figures available from author on request, To
appear in Z. Phys.
Critical end point behaviour in a binary fluid mixture
We consider the liquid-gas phase boundary in a binary fluid mixture near its
critical end point. Using general scaling arguments we show that the diameter
of the liquid-gas coexistence curve exhibits singular behaviour as the critical
end point is approached. This prediction is tested by means of extensive
Monte-Carlo simulations of a symmetrical Lennard-Jones binary mixture within
the grand canonical ensemble. The simulation results show clear evidence for
the proposed singularity, as well as confirming a previously predicted
singularity in the coexistence chemical potential [Fisher and Upton, Phys. Rev.
Lett. 65, 2402 (1990)]. The results suggest that the observed singularities,
particularly that in the coexistence diameter, should also be detectable
experimentally.Comment: 17 pages Revtex, 11 epsf figures. To appear in Phys. Rev.
A Simple Model for the DNA Denaturation Transition
We study pairs of interacting self-avoiding walks on the 3d simple cubic
lattice. They have a common origin and are allowed to overlap only at the same
monomer position along the chain. The latter overlaps are indeed favored by an
energetic gain.
This is inspired by a model introduced long ago by Poland and Sheraga [J.
Chem. Phys. {\bf 45}, 1464 (1966)] for the denaturation transition in DNA
where, however, self avoidance was not fully taken into account. For both
models, there exists a temperature T_m above which the entropic advantage to
open up overcomes the energy gained by forming tightly bound two-stranded
structures.
Numerical simulations of our model indicate that the transition is of first
order (the energy density is discontinuous), but the analog of the surface
tension vanishes and the scaling laws near the transition point are exactly
those of a second order transition with crossover exponent \phi=1. Numerical
and exact analytic results show that the transition is second order in modified
models where the self-avoidance is partially or completely neglected.Comment: 29 pages, LaTeX, 20 postscript figure
Metastable liquid lamellar structures in binary and ternary mixtures of Lennard-Jones fluids
We have carried out extensive equilibrium molecular dynamics (MD) simulations
to investigate the Liquid-Vapor coexistence in partially miscible binary and
ternary mixtures of Lennard-Jones (LJ) fluids. We have studied in detail the
time evolution of the density profiles and the interfacial properties in a
temperature region of the phase diagram where the condensed phase is demixed.
The composition of the mixtures are fixed, 50% for the binary mixture and
33.33% for the ternary mixture. The results of the simulations clearly indicate
that in the range of temperatures K, --in the scale of
argon-- the system evolves towards a metastable alternated liquid-liquid
lamellar state in coexistence with its vapor phase. These states can be
achieved if the initial configuration is fully disordered, that is, when the
particles of the fluids are randomly placed on the sites of an FCC crystal or
the system is completely mixed. As temperature decreases these states become
very well defined and more stables in time. We find that below K,
the alternated liquid-liquid lamellar state remains alive for 80 ns, in the
scale of argon, the longest simulation we have carried out. Nonetheless, we
believe that in this temperature region these states will be alive for even
much longer times.Comment: 18 Latex-RevTex pages including 12 encapsulated postscript figures.
Figures with better resolution available upon request. Accepted for
publication in Phys. Rev. E Dec. 1st issu
Which mechanism underlies the water-like anomalies in core-softened potentials?
Using molecular dynamics simulations we investigate the thermodynamic of
particles interacting with a continuous and a discrete versions of a
core-softened (CS) intermolecular potential composed by a repulsive shoulder.
Dynamic and structural properties are also analyzed by the simulations. We show
that in the continuous version of the CS potential the density at constant
pressure has a maximum for a certain temperature. Similarly the diffusion
constant, , at a constant temperature has a maximum at a density
and a minimum at a density
, and structural properties are also
anomalous. For the discrete CS potential none of these anomalies are observed.
The absence of anomalies in the discrete case and its presence in the
continuous CS potential are discussed in the framework of the excess entropy.Comment: 8 page
Phase diagrams of classical spin fluids: the influence of an external magnetic field on the liquid-gas transition
The influence of an external magnetic field on the liquid-gas phase
transition in Ising, XY, and Heisenberg spin fluid models is studied using a
modified mean field theory and Gibbs ensemble Monte Carlo simulations. It is
demonstrated that the theory is able to reproduce quantitatively all
characteristic features of the field dependence of the critical temperature
T_c(H) for all the three models. These features include a monotonic decrease of
T_c with rising H in the case of the Ising fluid as well as a more complicated
nonmonotonic behavior for the XY and Heisenberg models. The nonmonotonicity
consists in a decrease of T_c with increasing H at weak external fields, an
increase of T_c with rising H in the strong field regime, and the existence of
a minimum in T_c(H) at intermediate values of H. Analytical expressions for
T_c(H) in the large field limit are presented as well. The magnetic para-ferro
phase transition is also considered in simulations and described within the
mean field theory.Comment: 14 pages, 12 figures (to be submitted to Phys. Rev. E
Lattice-switch Monte Carlo
We present a Monte Carlo method for the direct evaluation of the difference
between the free energies of two crystal structures. The method is built on a
lattice-switch transformation that maps a configuration of one structure onto a
candidate configuration of the other by `switching' one set of lattice vectors
for the other, while keeping the displacements with respect to the lattice
sites constant. The sampling of the displacement configurations is biased,
multicanonically, to favor paths leading to `gateway' arrangements for which
the Monte Carlo switch to the candidate configuration will be accepted. The
configurations of both structures can then be efficiently sampled in a single
process, and the difference between their free energies evaluated from their
measured probabilities. We explore and exploit the method in the context of
extensive studies of systems of hard spheres. We show that the efficiency of
the method is controlled by the extent to which the switch conserves correlated
microstructure. We also show how, microscopically, the procedure works: the
system finds gateway arrangements which fulfill the sampling bias
intelligently. We establish, with high precision, the differences between the
free energies of the two close packed structures (fcc and hcp) in both the
constant density and the constant pressure ensembles.Comment: 34 pages, 9 figures, RevTeX. To appear in Phys. Rev.
Intra-molecular coupling as a mechanism for a liquid-liquid phase transition
We study a model for water with a tunable intra-molecular interaction
, using mean field theory and off-lattice Monte Carlo simulations.
For all , the model displays a temperature of maximum
density.For a finite intra-molecular interaction ,our
calculations support the presence of a liquid-liquid phase transition with a
possible liquid-liquid critical point for water, likely pre-empted by
inevitable freezing. For J=0 the liquid-liquid critical point disappears at
T=0.Comment: 8 pages, 4 figure
- …