2,213 research outputs found

    Do structured methods help eco-innovation: An evaluation of the product ideas tree diagram

    Get PDF
    This paper reports on the first test of the Product Ideas Tree diagram (PIT): a structured method aimed to help Eco-innovation. The PIT diagram structures ideas output from chaotic idea generating sessions. This study compared four ways of conducting an Eco-innovation workshop. The results show that structured methods help Eco-innovation by improving the constructive communication between the participants. Further development of the PIT diagram promises to contribute several new approaches to sustainable product and process design

    Detection of antibody-dependent complement mediated inactivation of both autologous and heterologous virus in primary HIV-1 infection

    Get PDF
    Specific CD8 T-cell responses to human immunodeficiency virus type 1 (HIV-1) are induced in primary infection and make an important contribution to the control of early viral replication. The importance of neutralizing antibodies in containing primary viremia is questioned because they usually arise much later. Nevertheless antienvelope antibodies develop simultaneously with, or even before, peak viremia. We determined whether such antibodies might control viremia by complement-mediated inactivation (CMI). In each of seven patients studied, antibodies capable of CMI appeared at or shortly after the peak in viremia, concomitantly with detection of virus-specific T-cell responses. The CMI was effective on both autologous and heterologous HIV-1 isolates. Activation of the classical pathway and direct viral lysis were at least partly responsible. Since immunoglobulin G (IgG)-antibodies triggered the CMI, specific memory B cells could also be induced by vaccination. Thus, consideration should be given to vaccination strategies that induce IgG antibodies capable of CMI

    Fast Quantum Search Algorithms in Protein Sequence Comparison - Quantum Biocomputing

    Get PDF
    Quantum search algorithms are considered in the context of protein sequence comparison in biocomputing. Given a sample protein sequence of length m (i.e m residues), the problem considered is to find an optimal match in a large database containing N residues. Initially, Grover's quantum search algorithm is applied to a simple illustrative case - namely where the database forms a complete set of states over the 2^m basis states of a m qubit register, and thus is known to contain the exact sequence of interest. This example demonstrates explicitly the typical O(sqrt{N}) speedup on the classical O(N) requirements. An algorithm is then presented for the (more realistic) case where the database may contain repeat sequences, and may not necessarily contain an exact match to the sample sequence. In terms of minimizing the Hamming distance between the sample sequence and the database subsequences the algorithm finds an optimal alignment, in O(sqrt{N}) steps, by employing an extension of Grover's algorithm, due to Boyer, Brassard, Hoyer and Tapp for the case when the number of matches is not a priori known.Comment: LaTeX, 5 page

    Situational awareness and safety

    Get PDF
    This paper considers the applicability of situation awareness concepts to safety in the control of complex systems. Much of the research to date has been conducted in aviation, which has obvious safety implications. It is argued that the concepts could be extended to other safety critical domains. The paper presents three theories of situational awareness: the three-level model, the interactive sub-systems approach, and the perceptual cycle. The difference between these theories is the extent to which they emphasise process or product as indicative of situational awareness. Some data from other studies are discussed to consider the negative effects of losing situational awareness, as this has serious safety implications. Finally, the application of situational awareness to system design, and training are presented

    Tackling Systematic Errors in Quantum Logic Gates with Composite Rotations

    Get PDF
    We describe the use of composite rotations to combat systematic errors in single qubit quantum logic gates and discuss three families of composite rotations which can be used to correct off-resonance and pulse length errors. Although developed and described within the context of NMR quantum computing these sequences should be applicable to any implementation of quantum computation.Comment: 6 pages RevTex4 including 4 figures. Will submit to Phys. Rev.

    Use of Quadrupolar Nuclei for Quantum Information processing by Nuclear Magnetic Resonance: Implementation of a Quantum Algorithm

    Get PDF
    Physical implementation of Quantum Information Processing (QIP) by liquid-state Nuclear Magnetic Resonance (NMR), using weakly coupled spin-1/2 nuclei of a molecule, is well established. Nuclei with spin>>1/2 oriented in liquid crystalline matrices is another possibility. Such systems have multiple qubits per nuclei and large quadrupolar couplings resulting in well separated lines in the spectrum. So far, creation of pseudopure states and logic gates have been demonstrated in such systems using transition selective radio-frequency pulses. In this paper we report two novel developments. First, we implement a quantum algorithm which needs coherent superposition of states. Second, we use evolution under quadrupolar coupling to implement multi qubit gates. We implement Deutsch-Jozsa algorithm on a spin-3/2 (2 qubit) system. The controlled-not operation needed to implement this algorithm has been implemented here by evolution under the quadrupolar Hamiltonian. This method has been implemented for the first time in quadrupolar systems. Since the quadrupolar coupling is several orders of magnitude greater than the coupling in weakly coupled spin-1/2 nuclei, the gate time decreases, increasing the clock speed of the quantum computer.Comment: 16 pages, 3 figure

    An NMR-based nanostructure switch for quantum logic

    Get PDF
    We propose a nanostructure switch based on nuclear magnetic resonance (NMR) which offers reliable quantum gate operation, an essential ingredient for building a quantum computer. The nuclear resonance is controlled by the magic number transitions of a few-electron quantum dot in an external magnetic field.Comment: 4 pages, 2 separate PostScript figures. Minor changes included. One reference adde

    Results of the First Coincident Observations by Two Laser-Interferometric Gravitational Wave Detectors

    Get PDF
    We report an upper bound on the strain amplitude of gravitational wave bursts in a waveband from around 800Hz to 1.25kHz. In an effective coincident observing period of 62 hours, the prototype laser interferometric gravitational wave detectors of the University of Glasgow and Max Planck Institute for Quantum Optics, have set a limit of 4.9E-16, averaging over wave polarizations and incident directions. This is roughly a factor of 2 worse than the theoretical best limit that the detectors could have set, the excess being due to unmodelled non-Gaussian noise. The experiment has demonstrated the viability of the kind of observations planned for the large-scale interferometers that should be on-line in a few years time.Comment: 11 pages, 2 postscript figure

    Simple model for scanning tunneling spectroscopy of noble metal surfaces with adsorbed Kondo impurities

    Full text link
    A simple model is introduced to describe conductance measurements between a scanning tunneling microscope (STM) tip and a noble metal surface with adsorbed transition metal atoms which display the Kondo effect. The model assumes a realistic parameterization of the potential created by the surface and a d3z2-r2 orbital for the description of the adsorbate. Fano lineshapes associated with the Kondo resonance are found to be sensitive to details of the adsorbate-substrate interaction. For instance, bringing the adsorbate closer to the surface leads to more asymmetric lineshapes while their dependence on the tip distance is weak. We find that it is important to use a realistic surface potential, to properly include the tunnelling matrix elements to the tip and to use substrate states which are orthogonal to the adsorbate and tip states. An application of our model to Co adsorbed on Cu explains the difference in the lineshapes observed between Cu(100) and Cu(111) surfaces.Comment: 11 pages, 8 eps figure

    A Human Situation Awareness Support System to Avoid Technological Disasters

    Full text link
    In many complex technological systems, accidents have primarily been attributed to human error. In the majority of these accidents the human operators were striving against significant challenges. They have to face data overload, the challenge of working with a complex system and the stressful task of understanding what is going on in the situation. Therefore, to design and implement complex technological systems where the information flow is quite high, and poor decisions may lead to serious consequences, Situation Awareness (SA) should be appropriately considered. A level 1 SA is highly supported in these systems through the various heterogeneous sensors and signal-processing methods but, for levels 2 and 3 there is still a need for concepts and methods. This work develops a system called the Human Situation Awareness Support System (HSASS) that supports the safety operators in an ever increasing amount of available risky status and alert information. The proposed system includes a new dynamic situation assessment method based on risk, which has the ability to support the operators understanding of the current state of the system, predict the near future, and suggest appropriate actions. The proposed system does not control the course of action and allows the human to act at his/her discretion in specific contexts
    corecore