28 research outputs found

    Fermi edge singularity in a non-equilibrium system

    Full text link
    We report exact results for the Fermi Edge Singularity in the absorption spectrum of an out-of-equilibrium tunnel junction. We consider two metals with chemical potential difference V separated by a tunneling barrier containing a defect, which exists in one of two states. When it is in its excited state, tunneling through the otherwise impermeable barrier is possible. We find that the lineshape not only depends on the total scattering phase shift as in the equilibrium case but also on the difference in the phase of the reflection amplitudes on the two sides of the barrier. The out-of-equilibrium spectrum extends below the original threshold as energy can be provided by the power source driving current across the barrier. Our results have a surprisingly simple interpretation in terms of known results for the equilibrium case but with (in general complex-valued) combinations of elements of the scattering matrix replacing the equilibrium phase shifts.Comment: 4 page

    Unpolarized quasielectrons and the spin polarization at filling fractions between 1/3 and 2/5

    Full text link
    We prove that for a hard core interaction the ground state spin polarization in the low Zeeman energy limit is given by P=2/ν−5P=2/\nu-5 for filling fractions in the range 1/3≤ν≤2/5 1/3 \leq\nu\leq 2/5 . The same result holds for a Coulomb potential except for marginally small magnetic fields. At the magnetic fields B<20TB<20T unpolarized quasielectrons can manifest themselves by a characteristic peak in the I-V characteristics for tunneling between two ν=1/3\nu=1/3 ferromagnets.Comment: 8 pages, Latex. accepted for publication in Phys.Rev.

    Effective Mass of the Four Flux Composite Fermion at ν=1/4\nu = 1/4

    Full text link
    We have measured the effective mass (m∗m^*) of the four flux composite fermion at Landau level filling factor ν=1/4\nu = 1/4 (4^4CF), using the activation energy gaps at the fractional quantum Hall effect (FQHE) states ν\nu = 2/7, 3/11, and 4/15 and the temperature dependence of the Shubnikov-de Haas (SdH) oscillations around ν=1/4\nu = 1/4. We find that the energy gaps show a linear dependence on the effective magnetic field BeffB_{eff} (≡B−Bν=1/4\equiv B-B_{\nu=1/4}), and from this linear dependence we obtain m∗=1.0mem^* = 1.0 m_e and a disorder broadening Γ∼\Gamma \sim 1 K for a sample of density n=0.87Ă—1011n = 0.87 \times 10^{11} /cm2^2. The m∗m^* deduced from the temperature dependence of the SdH effect shows large differences for ν>1/4\nu > 1/4 and ν<1/4\nu < 1/4. For ν>1/4\nu > 1/4, m∗∼1.0mem^* \sim 1.0 m_e. It scales as Bν\sqrt{B_{\nu}} with the mass derived from the data around ν=1/2\nu =1/2 and shows an increase in m∗m^* as ν→1/4\nu \to 1/4, resembling the findings around ν=1/2\nu =1/2. For ν<1/4\nu < 1/4, m∗m^* increases rapidly with increasing BeffB_{eff} and can be described by m∗/me=−3.3+5.7Ă—Beffm^*/m_e = -3.3 + 5.7 \times B_{eff}. This anomalous dependence on BeffB_{eff} is precursory to the formation of the insulating phase at still lower filling.Comment: 5 pages, 3 figure

    Excitation gaps in fractional quantum Hall states: An exact diagonalization study

    Full text link
    We compute energy gaps for spin-polarized fractional quantum Hall states in the lowest Landau level at filling fractions nu=1/3, 2/5,3/7 and 4/9 using exact diagonalization of systems with up to 16 particles and extrapolation to the infinite system-size limit. The gaps calculated for a pure Coulomb interaction and ignoring finite width effects, disorder and LL mixing agree with predictions of composite fermion theory provided the logarithmic corrections to the effective mass are included. This is in contrast with previous estimates, which, as we show, overestimated the gaps at nu=2/5 and 3/7 by around 15%. We also study the reduction of the gaps as a result of the non-zero width of the 2D layer. We show that these effects are accurately accounted for using either Gaussian or z*Gaussian' (zG) trial wavefunctions, which we show are significantly better variational wavefunctions than the Fang-Howard wavefunction. For quantum well parameters typical of heterostructure samples, we find gap reductions of around 20%. The experimental gaps, after accounting heuristically for disorder,are still around 40% smaller than the computed gaps. However, for the case of tetracene layers inmetal-insulator-semiconductor (MIS) devices we find that the measured activation gaps are close to those we compute. We discuss possible reasons why the difference between computed and measured activation gaps is larger in GaAs heterostructures than in MIS devices. Finally, we present new calculations using systems with up to 18 electrons of the gap at nu=5/2 including width corrections.Comment: 18 pages, 17 figure

    Scaling Law for a Magnetic Impurity Model with Two-Body Hybridization

    Full text link
    We consider a magnetic impurity coupled to the hybridizing and screening channels of a conduction band. The model is solved in the framework of poor man's scaling and Cardy's generalized theories. We point out that it is important to include a two-body hybridization if the scaling theory is to be valid for the band width larger than UU. We map out the boundary of the Fermi-non-Fermi liquid phase transition as a function of the model parameters.Comment: 14 pages, latex, 1 figure included

    The excitonic collapse of higher Landau level fractional quantum Hall effect

    Full text link
    The scarcity of the fractional quantum Hall effect in higher Landau levels is a most intriguing fact when contrasted with its great abundance in the lowest Landau level. This paper shows that a suppression of the hard core repulsion in going from the lowest Landau level to higher Landau levels leads to a collapse of the energy of the neutral excitation, destabilizing all fractional states in the third and higher Landau levels, and almost all in the second Landau level. The remaining fractions are in agreement with those observed experimentally.Comment: 5 pages, 3 figures. To appear in Phys. Rev. B Rapid Communicatio

    Hamiltonian Theory of the FQHE: Conserving Approximation for Incompressible Fractions

    Full text link
    A microscopic Hamiltonian theory of the FQHE developed by Shankar and the present author based on the fermionic Chern-Simons approach has recently been quite successful in calculating gaps and finite tempertature properties in Fractional Quantum Hall states. Initially proposed as a small-qq theory, it was subsequently extended by Shankar to form an algebraically consistent theory for all qq in the lowest Landau level. Such a theory is amenable to a conserving approximation in which the constraints have vanishing correlators and decouple from physical response functions. Properties of the incompressible fractions are explored in this conserving approximation, including the magnetoexciton dispersions and the evolution of the small-qq structure factor as \nu\to\half. Finally, a formalism capable of dealing with a nonuniform ground state charge density is developed and used to show how the correct fractional value of the quasiparticle charge emerges from the theory.Comment: 15 pages, 2 eps figure

    Hamiltonian theory of gaps, masses and polarization in quantum Hall states: full disclosure

    Full text link
    I furnish details of the hamiltonian theory of the FQHE developed with Murthy for the infrared, which I subsequently extended to all distances and apply it to Jain fractions \nu = p/(2ps + 1). The explicit operator description in terms of the CF allows one to answer quantitative and qualitative issues, some of which cannot even be posed otherwise. I compute activation gaps for several potentials, exhibit their particle hole symmetry, the profiles of charge density in states with a quasiparticles or hole, (all in closed form) and compare to results from trial wavefunctions and exact diagonalization. The Hartree-Fock approximation is used since much of the nonperturbative physics is built in at tree level. I compare the gaps to experiment and comment on the rough equality of normalized masses near half and quarter filling. I compute the critical fields at which the Hall system will jump from one quantized value of polarization to another, and the polarization and relaxation rates for half filling as a function of temperature and propose a Korringa like law. After providing some plausibility arguments, I explore the possibility of describing several magnetic phenomena in dirty systems with an effective potential, by extracting a free parameter describing the potential from one data point and then using it to predict all the others from that sample. This works to the accuracy typical of this theory (10 -20 percent). I explain why the CF behaves like free particle in some magnetic experiments when it is not, what exactly the CF is made of, what one means by its dipole moment, and how the comparison of theory to experiment must be modified to fit the peculiarities of the quantized Hall problem

    Hamiltonian Description of Composite Fermions: Calculation of Gaps

    Full text link
    We analytically calculate gaps for the 1/3, 2/5, and 3/7 polarized and partially polarized Fractional Quantum Hall states based on the Hamiltonian Chern-Simons theory we have developed. For a class of potentials that are soft at high momenta (due to the finite thickness of the sample) we find good agreement with numerical and experimental results.Comment: 4 pages, 2 eps figures. One reference added, some typos (one in equation 7) corrected, and minor notational modification
    corecore