422 research outputs found

    Numerical modelling of non-ionic microgels: an overview

    Get PDF
    Microgels are complex macromolecules. These colloid-sized polymer networks possess internal degrees of freedom and, depending on the polymer(s) they are made of, can acquire a responsiveness to variations of the environment (temperature, pH, salt concentration, etc.). Besides being valuable for many practical applications, microgels are also extremely important to tackle fundamental physics problems. As a result, these last years have seen a rapid development of protocols for the synthesis of microgels, and more and more research has been devoted to the investigation of their bulk properties. However, from a numerical standpoint the picture is more fragmented, as the inherently multi-scale nature of microgels, whose bulk behaviour crucially depends on the microscopic details, cannot be handled at a single level of coarse-graining. Here we present an overview of the methods and models that have been proposed to describe non-ionic microgels at different length-scales, from the atomistic to the single-particle level. We especially focus on monomer-resolved models, as these have the right level of details to capture the most important properties of microgels, responsiveness and softness. We suggest that these microscopic descriptions, if realistic enough, can be employed as starting points to develop the more coarse-grained representations required to investigate the behaviour of bulk suspensions

    Numerical study of the glass-glass transition in short-ranged attractive colloids

    Full text link
    We report extensive numerical simulations in the {\it glass} region for a simple model of short-ranged attractive colloids, the square well model. We investigate the behavior of the density autocorrelation function and of the static structure factor in the region of temperatures and packing fractions where a glass-glass transition is expected according to theoretical predictions. We strengthen our observations by studying both waiting time and history dependence of the numerical results. We provide evidence supporting the possibility that activated bond-breaking processes destabilize the attractive glass, preventing the full observation of a sharp glass-glass kinetic transition.Comment: 15 pages, 9 figures; Proceedings of "Structural Arrest Transitions in Colloidal Systems with Short-Range Attractions", Messina, Italy, December 2003 (submitted to J. Phys.: Condens. Matt.

    Gelation as arrested phase separation in short-ranged attractive colloid-polymer mixtures

    Full text link
    We present further evidence that gelation is an arrested phase separation in attractive colloid-polymer mixtures, based on a method combining confocal microscopy experiments with numerical simulations recently established in {\bf Nature 453, 499 (2008)}. Our results are independent of the form of the interparticle attractive potential, and therefore should apply broadly to any attractive particle system with short-ranged, isotropic attractions. We also give additional characterization of the gel states in terms of their structure, inhomogeneous character and local density.Comment: 6 figures, to be published in J. Phys. Condens. Matter, special issue for EPS Liquids Conference 200

    Hard Spheres: Crystallization and Glass Formation

    Full text link
    Motivated by old experiments on colloidal suspensions, we report molecular dynamics simulations of assemblies of hard spheres, addressing crystallization and glass formation. The simulations cover wide ranges of polydispersity s (standard deviation of the particle size distribution divided by its mean) and particle concentration. No crystallization is observed for s > 0.07. For 0.02 < s < 0.07, we find that increasing the polydispersity at a given concentration slows down crystal nucleation. The main effect here is that polydispersity reduces the supersaturation since it tends to stabilise the fluid but to destabilise the crystal. At a given polydispersity (< 0.07) we find three regimes of nucleation: standard nucleation and growth at concentrations in and slightly above the coexistence region; "spinodal nucleation", where the free energy barrier to nucleation appears to be negligible, at intermediate concentrations; and, at the highest concentrations, a new mechanism, still to be fully understood, which only requires small re-arrangement of the particle positions. The cross-over between the second and third regimes occurs at a concentration, around 58% by volume, where the colloid experiments show a marked change in the nature of the crystals formed and the particle dynamics indicate an "ideal" glass transition

    Crystal-to-crystal transition of ultrasoft colloids under shear

    Full text link
    Ultrasoft colloids typically do not spontaneously crystallize, but rather vitrify, at high concentrations. Combining in-situ rheo-SANS experiments and numerical simulations we show that shear facilitates crystallization of colloidal star polymers in the vicinity of their glass transition. With increasing shear rate well beyond rheological yielding, a transition is found from an initial bcc-dominated structure to an fcc-dominated one. This crystal-to-crystal transition is not accompanied by intermediate melting but occurs via a sudden reorganization of the crystal structure. Our results provide a new avenue to tailor colloidal crystallization and crystal-to-crystal transition at molecular level by coupling softness and shear

    Crystallization of hard-sphere glasses

    Full text link
    We study by molecular dynamics the interplay between arrest and crystallization in hard spheres. For state points in the plane of volume fraction (0.54phi0.630.54 \leq phi \leq 0.63) and polydispersity (0s0.0850 \leq s \leq 0.085), we delineate states that spontaneously crystallize from those that do not. For noncrystallizing (or precrystallization) samples we find isodiffusivity lines consistent with an ideal glass transition at ϕg0.585\phi_g \approx 0.585, independent of ss. Despite this, for s<0.05s<0.05, crystallization occurs at ϕ>ϕg\phi > \phi_g. This happens on time scales for which the system is aging, and a diffusive regime in the mean square displacement is not reached; by those criteria, the system is a glass. Hence, contrary to a widespread assumption in the colloid literature, the occurrence of spontaneous crystallization within a bulk amorphous state does not prove that this state was an ergodic fluid rather than a glass.Comment: 4 pages, 3 figure

    Multiple glass transitions in star polymer mixtures: Insights from theory and simulations

    Full text link
    The glass transition in binary mixtures of star polymers is studied by mode coupling theory and extensive molecular dynamics computer simulations. In particular, we have explored vitrification in the parameter space of size asymmetry δ\delta and concentration ρ2\rho_2 of the small star polymers at fixed concentration of the large ones. Depending on the choice of parameters, three different glassy states are identified: a single glass of big polymers at low δ\delta and low ρ2\rho_2, a double glass at high δ\delta and low ρ2\rho_2, and a novel double glass at high ρ2\rho_2 and high δ\delta which is characterized by a strong localization of the small particles. At low δ\delta and high ρ2\rho_2 there is a competition between vitrification and phase separation. Centered in the (δ,ρ2)(\delta, \rho_2)-plane, a liquid lake shows up revealing reentrant glass formation. We compare the behavior of the dynamical density correlators with the predictions of the theory and find remarkable agreement between the two.Comment: 15 figures, to be published in Macromolecule

    Validity of Stokes-Einstein Relation in Soft Colloids up to the Glass Transition

    Get PDF
    We investigate the dynamics of kinetically frozen block copolymer micelles of different softness across a wide range of particle concentrations, from the fluid to the onset of glassy behavior, through a combination of rheology, dynamic light scattering and pulsed field gradient NMR spectroscopy. We additionally perform Brownian dynamics simulations based on an ultrasoft coarse-grained potential, which are found to be in quantitative agreement with experiments, capturing even the very details of dynamic structure factors S(Q, t) on approaching the glass transition. We provide evidence that for these systems the Stokes-Einstein relation holds up to the glass transition; given that it is violated for dense suspensions of hard colloids, our findings suggest that its validity is an intriguing signature of ultrasoft interactions.Comment: 5 pages, 4 figures, Supplementary Information, Accepted to Physical Review Letters (PRL) (2015

    Tuning the rheological behavior of colloidal gels through competing interactions

    Get PDF
    We study colloidal gels formed by competing electrostatic repulsion and short-range attraction by means of extensive numerical simulations under external shear. We show that, upon varying the repulsion strength, the gel structure and its viscoelastic properties can be largely tuned. In particular, the gel fractal dimension can be either increased or decreased with respect to mechanical equilibrium conditions. Unexpectedly, gels with stronger repulsion, despite being mechanically stiffer, are found to be less viscous with respect to purely attractive ones. We provide a microscopic explanation of these findings in terms of the influence of an underlying phase separation. Our results allow for the design of colloidal gels with desired structure and viscoelastic response by means of additional electrostatic interactions, easily controllable in experiments

    Scaling of dynamics with the range of interaction in short-range attractive colloids

    Full text link
    We numerically study the dependence of the dynamics on the range of interaction Δ\Delta for the short-range square well potential. We find that, for small Δ\Delta, dynamics scale exactly in the same way as thermodynamics, both for Newtonian and Brownian microscopic dynamics. For interaction ranges from a few percent down to the Baxter limit, the relative location of the attractive glass line and the liquid-gas line does not depend on Δ\Delta. This proves that in this class of potentials, disordered arrested states (gels) can be generated only as a result of a kinetically arrested phase separation.Comment: 4 pages, 4 figure
    corecore