1,104 research outputs found

    The genomes and history of domestic animals

    Get PDF
    This paper reviews how mammalian genomes are utilized in modern genetics for the detection of genes and polymorphisms (mutations) within domesticated animal (mostly livestock) genomes that are related to traits of economic importance to humans. Examples are given of how genetic analysis allows to determine key genes associated with the quality and quantity of milk in cattle and key genes for meat production. Various questions are reviewed, such as how contemporary methods of genome sequencing allow to maximise the effective detection of coding and regulatory DNA polymorphisms within the genomes of major domesticated mammals (cattle, sheep and pigs) and the history of their formation from the standpoint of genetics

    Pionic Degrees of Freedom in Atomic Nuclei and Quasielastic Knockout of Pions by High-Energy Electrons

    Get PDF
    The nonlinear model of pionic condensate in nuclei by G. Preparata can be efficiently verified by investigation of the quasielastic knockout process of pions out of nuclei by high energy electrons. First, a momentum distribution (MD) of the collective pions has a bright maximum at q=0.3 Gev.Second the excitation spectrum of a recoil nucleus is concentrated at low energies E lesser than 1MeV. The results for the pion knockout from mesonic clouds of individual nucleons are absolutely different. The latter results are presented both for pion and rho-meson clouds localized on nucleons.Comment: 13 pages, 3 figure

    Numerical modeling of troposphere-induced gravity wave propagation

    Get PDF
    Sources of internal gravity waves (IGW) in the upper atmosphere are assumed to be meteorological processes in the troposphere. These sources are vertically and horizontally inhomogeneous and time dependent. In order to describe the IGW propagation from such sources, a numerical solution of a system of hydrodynamical equations is required. In addition, it is necessary to take into account the influence of the altitude latitude inhomogeneity of the temperature and wind fields on the IGW propagation as well as the processes of dissipation. An algorithm is proposed for numerical modelling of the IGW propagation over a limited area from tropospheric local sources to the upper atmosphere. The algorithm takes into account all the above features. A spectral grid method is used with the expansion of wave fields into the Fourier series over longitude. The upper limit conditions were obtained from the requirement of a limited energy dissipation rate in an atmospheric column. The no slip (zero velocity) condition was used at the Earth's surface
    corecore