1,365 research outputs found

    Evolution of the Luminosity Density in the Universe: Implications for the Nonzero Cosmological Constant

    Get PDF
    We show that evolution of the luminosity density of galaxies in the universe provides a powerful test for the geometry of the universe. Using reasonable galaxy evolution models of population synthesis which reproduce the colors of local galaxies of various morphological types, we have calculated the luminosity density of galaxies as a function of redshift zz. Comparison of the result with recent measurements by the Canada-France Redshift Survey in three wavebands of 2800{\AA}, 4400{\AA}, and 1 micron at z<1 indicates that the \Lambda-dominated flat universe with \lambda_0 \sim 0.8 is favored, and the lower limit on \lambda_0 yields 0.37 (99% C.L.) or 0.53 (95% C.L.) if \Omega_0+\lambda_0=1. The Einstein-de Sitter universe with (\Omega_0, \lambda_0)=(1, 0) and the low-density open universe with (0.2, 0) are however ruled out with 99.86% C.L. and 98.6% C.L., respectively. The confidence levels quoted apply unless the standard assumptions on galaxy evolution are drastically violated. We have also calculated a global star formation rate in the universe to be compared with the observed rate beyond z \sim 2. We find from this comparison that spiral galaxies are formed from material accretion over an extended period of a few Gyrs, while elliptical galaxies are formed from initial star burst at z >~ 5 supplying enough amount of metals and ionizing photons in the intergalactic medium.Comment: 11 pages including 3 figures, LaTeX, uses AASTeX. To Appear in ApJ Letter

    Spin-Glass-like Transition and Hall Resistivity of Y2-xBixIr2O7

    Full text link
    Various physical properties of the pyrochlore oxide Y2-xBixIr2O7 have been studied. The magnetizations M measured under the conditions of the zero-field-cooling(ZFC) and the field-cooling(FC) have different values below the temperature T=TG. The anomalous T-dependence of the electrical resistivities r and the thermoelectric powers S observed at around TG indicates that the behavior of the magnetization is due to the transition to the state with the spin freezing. In this spin-frozen state, the Hall resistivities rH measured with the ZFC and FC conditions are found to have different values, too, in the low temperature phase (T<TG). Possible mechanisms which induce such the hysteretic behavior are discussed.Comment: 9 pages, 7 figures, J. Phys. Soc. Jpn. 72 (2003) No.

    Editorial: role of protein palmitoylation in synaptic plasticity and neuronal differentiation

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Yoshii, A., & Green, W. N. Editorial: role of protein palmitoylation in synaptic plasticity and neuronal differentiation. Frontiers in Synaptic Neuroscience, 12(27), (2020), doi:10.3389/fnsyn.2020.00027.Protein palmitoylation, the reversible addition of palmitate to proteins, is a dynamic post-translational modification. Both membrane (e.g., channels, transporters, and receptors) and cytoplasmic proteins (e.g., cell adhesion, scaffolding, cytoskeletal, and signaling molecules) are substrates. In mammals, palmitoylation is mediated by 23-24 palmitoyl acyltransferases (PATs), also called ZDHHCs for their catalytic aspartate-histidine-histidine-cysteine (DHCC) domain. PATs are integral membrane proteins found in cellular membranes. In the palmitoylation cycle, palmitate is removed by the depalmitoylation enzymes, acyl palmitoyl transferases (APT1 and 2), and α/β Hydrolase domain-containing protein 17 (ABHD17A-C). These are cytoplasmic proteins that are targeted to membranes where they are substrates for PATs. The second class of depalmitoylating enzymes are palmitoyl thioesterases, PPT1 and 2, discovered through their association with infantile neuronal ceroid lipofuscinosis. These are secreted proteins found in the lumen of intracellular organelles, primarily lysosomes, where their function as depalmitoylating enzymes is unclear.This work was supported by University of Illinois start-up fund (to AY) and NIH/NIDA (grant DA044760 to WG)

    Unavoidable Selection Effects in the Analysis of Faint Galaxies in the Hubble Deep Field: Probing the Cosmology and Merger History of Galaxies

    Get PDF
    (Abridged) We present a detailed analysis of the number count and photometric redshift distribution of faint galaxies in the Hubble Deep Field (HDF), paying a special attention to the selection effects including the cosmological dimming of surface brightness of galaxies. We find a considerably different result from previous studies ignoring the selection effects, and these effects should therefore be taken into account in the analysis. We find that the model of pure luminosity evolution (PLE) of galaxies in the Einstein-de Sitter (EdS) universe predicts much smaller counts than those observed at faint magnitude limits by a factor of more than 10, so that a very strong number evolution of galaxies with \eta > 3-4 must be invoked to reproduce the I_{814} counts, when parametrized as \phi^* \propto (1+z)^\eta. However we show that such a strong number evolution under realistic merging processes of galaxies can not explain the steep slope of the B_{450} and V_{606} counts, and it is seriously inconsistent with their photometric redshift distribution. We find that these difficulties still persist in an open universe with \Omega_0 > 0.2, but are resolved only when we invoke a Λ\Lambda-dominated flat universe, after examining various systematic uncertainties in modeling the formation and evolution of galaxies. The present analysis revitalizes the practice of using faint number counts as an important cosmological test, giving one of the arguments against the EdS universe and suggests acceleration of the cosmic expansion by vacuum energy density. While a modest number evolution of galaxies with \eta ~ 1 is still necessary even in a Lambda-dominated universe, a stronger number evolution with \eta > 1 is rejected from the HDF data, giving a strong constraint on the merger history of galaxies.Comment: 24 pages, 15 figures, final version matching publication in ApJ. Some references added. The complete ps file of Table 3 is available at http://th.nao.ac.jp/~totani/images/paper/ty2000-table3.p

    Telling the tale of the first stars

    Full text link
    HE 0107-5240 is a star in more than once sense of the word. Chemically, it is the most primitive object yet discovered, and it is at the centre of debate about the origins of the first elements in the Universe.Comment: 3 pages, 0 figures, published in Nature "News and Views," Apr. 24, 200

    The Transit Light Curve Project. V. System Parameters and Stellar Rotation Period of HD 189733

    Get PDF
    We present photometry of HD 189733 during eight transits of its close-in giant planet, and out-of-transit photometry spanning two years. Using the transit photometry, we determine the stellar and planetary radii and the photometric ephemeris. Outside of transits, there are quasiperiodic flux variations with a 13.4 day period that we attribute to stellar rotation. In combination with previous results, we derive upper limits on the orbital eccentricity, and on the true angle between the stellar rotation axis and planetary orbit (as opposed to the angle between the projections of those axes on the sky).Comment: Accepted for publication in AJ [21 pages]; minor change

    Hierarchical Formation of Galaxies with Dynamical Response to Supernova-Induced Gas removal

    Full text link
    We reanalyze the formation and evolution of galaxies in the hierarchical clustering scenario. Using a semi-analytic model (SAM) of galaxy formation described in this paper, which we hereafter call the Mitaka model, we extensively investigate the observed scaling relations of galaxies among photometric, kinematic, structural and chemical characteristics. In such a scenario, spheroidal galaxies are assumed to be formed by major merger and subsequent starburst, in contrast to the traditional scenario of monolithic cloud collapse. As a new ingredient of SAMs, we introduce the effects of dynamical response to supernova-induced gas removal on size and velocity dispersion, which play an important role on dwarf galaxy formation. In previous theoretical studies of dwarf galaxies based on the monolithic cloud collapse given by Yoshii & Arimoto and Dekel & Silk, the dynamical response was treated in the extremes of a purely baryonic cloud and a baryonic cloud fully supported by surrounding dark matter. To improve this simple treatment, in our previous paper, we formulated the dynamical response in more realistic, intermediate situations between the above extremes. While the effects of dynamical response depend on the mass fraction of removed gas from a galaxy, how much amount of the gas remains just after major merger depends on the star formation history. A variety of star formation histories are generated through the Monte Carlo realization of merging histories of dark halos, and it is found that our SAM naturally makes a wide variety of dwarf galaxies and their dispersed characteristics as observed. (Abridged)Comment: 24 pages including 29 figures, using emulateapj.cls; accepted for publication in Ap

    Arrival directions of large air showers, low-mu showers and old-age low-mu air showers observed at St. Chacaltaya

    Get PDF
    Arrival directions of air showers with primary energies in the range 10 to the 16.5 power eV to 10 to the 18th power eV show the first harmonic in right ascension (RA) with amplitude of 2.7 + or - 1.0% and phase of 13-16h. However, the second harmonic in RA slightly seen for showers in the range 10 to the 18th power eV to 10 to the 19th power eV disappeared by accumulation of observed showers. The distribution of arrival directions of low-mu air showers with primary energies around 10 to the 15th power eV observed at Chacaltaya from 1962 to 1967 is referred to, relating to the above-mentioned first harmonic. Also presented in this paper are arrival directions of old-age low-mu air showers observed at Chacaltaya from 1962 to 1967, for recent interest in gamma-ray air showers

    Diffuse Extragalactic Background Light versus Deep Galaxy Counts in the Subaru Deep Field: Missing Light in the Universe?

    Full text link
    Deep optical and near-infrared galaxy counts are utilized to estimate the extragalactic background light (EBL) coming from normal galactic light in the universe. Although the slope of number-magnitude relation of the faintest counts is flat enough for the count integration to converge, considerable fraction of EBL from galaxies could still have been missed in deep galaxy surveys because of various selection effects including the cosmological dimming of surface brightness of galaxies. Here we give an estimate of EBL from galaxy counts, in which these selection effects are quantitatively taken into account for the first time, based on reasonable models of galaxy evolution which are consistent with all available data of galaxy counts, size, and redshift distributions. We show that the EBL from galaxies is best resolved into discrete galaxies in the near-infrared bands (J, K) by using the latest data of the Subaru Deep Field; more than 80-90% of EBL from galaxies has been resolved in these bands. Our result indicates that the contribution by missing galaxies cannot account for the discrepancy between the count integration and recent tentative detections of diffuse EBL in the K-band (2.2 micron), and there may be a very diffuse component of EBL which has left no imprints in known galaxy populations.Comment: ApJ Letters in press. Two new reports on the diffuse EBL at 1.25 and 2.2 microns are added to the reference list and Table
    • …
    corecore