355 research outputs found
Production technology of heat-resistant high-strength syntactic carbon foams for operation in extreme conditions
© Published under licence by IOP Publishing Ltd. Production technology of products based on the syntactic carbon foams designed to operate in extreme conditions is proposed. The components and regime parameters for the production of foams of an open-pore cellular structure with specified thermophysical and strength characteristics for manufacturing the large-sized products of complex shape are determined
Magneto-Conductance Anisotropy and Interference Effects in Variable Range Hopping
We investigate the magneto-conductance (MC) anisotropy in the variable range
hopping regime, caused by quantum interference effects in three dimensions.
When no spin-orbit scattering is included, there is an increase in the
localization length (as in two dimensions), producing a large positive MC. By
contrast, with spin-orbit scattering present, there is no change in the
localization length, and only a small increase in the overall tunneling
amplitude. The numerical data for small magnetic fields , and hopping
lengths , can be collapsed by using scaling variables , and
in the perpendicular and parallel field orientations
respectively. This is in agreement with the flux through a `cigar'--shaped
region with a diffusive transverse dimension proportional to . If a
single hop dominates the conductivity of the sample, this leads to a
characteristic orientational `finger print' for the MC anisotropy. However, we
estimate that many hops contribute to conductivity of typical samples, and thus
averaging over critical hop orientations renders the bulk sample isotropic, as
seen experimentally. Anisotropy appears for thin films, when the length of the
hop is comparable to the thickness. The hops are then restricted to align with
the sample plane, leading to different MC behaviors parallel and perpendicular
to it, even after averaging over many hops. We predict the variations of such
anisotropy with both the hop size and the magnetic field strength. An
orientational bias produced by strong electric fields will also lead to MC
anisotropy.Comment: 24 pages, RevTex, 9 postscript figures uuencoded Submitted to PR
Recommended from our members
An active target concept for the electronuclear reactor
Preliminary identification of the components and efficiency estimations for the proposed (by Chelyabinsk-70) concept of active target for electronuclear reactor are goals of this work. (The electronuclear reactor comprises a high-energy proton acclerator, a high-atomic-number target (lead, tungsten) which produces neutrons from the protons, and a subcritical blanket.) Results of preliminary neutron and thermal-hydraulic simulations of the target are represented in the paper and preliminary detailing of the active target components is performed. It is shown that the use of active target can lead to an essential reduction of the requirements to the accelerator power without deterioration of the safety of the system
Measurement of decay rate and parameters at KEDR
Using the inclusive photon spectrum based on a data sample collected at the
peak with the KEDR detector at the VEPP-4M collider, we
measured the rate of the radiative decay as well
as mass and width. Taking into account an asymmetric photon
lineshape we obtained keV, MeV/, MeV.Comment: 6 pages, 3 figure
Measurement of J/psi to eta_c gamma at KEDR
We present a study of the inclusive photon spectra from 5.9 million J/psi
decays collected with the KEDR detector at the VEPP-4M e+e- collider. We
measure the branching fraction of radiative decay J/psi to eta_c gamma, eta_c
width and mass. Our preliminary results are: M(eta_c) = 2979.4+-1.5+-1.9 MeV,
G(eta_c) = 27.8+-5.1+-3.3 MeV, B(J/psi to eta_c gamma) = (2.34+-0.15+-0.40)%.Comment: To be published in Proceedings of the PhiPsi09, Oct. 13-16, 2009,
Beijing, Chin
Measurement of B(J/psi->eta_c gamma) at KEDR
We present a study of the inclusive photon spectrum from 6.3 million J/psi
decays collected with the KEDR detector at the VEPP-4M e+e- collider. We
measure the branching fraction of the radiative decay J/psi -> eta_c gamma,
eta_c width and mass. Taking into account an asymmetric photon line shape we
obtain: M(eta_c) = (2978.1 +- 1.4 +- 2.0) MeV/c^2, Gamma(eta_c) = (43.5 +- 5.4
+- 15.8) MeV, B(J/psi->eta_c gamma) = (2.59 +- 0.16 +- 0.31)%$.Comment: 6 pages, 1 figure. To be published in the proceedings of the 4th
International Workshop on Charm Physics (Charm2010), October 21-24, 2010,
IHEP, Beijin
Есть ли связь обмена железа с течением СOVID-19?
The review analyzes possible epidemiological and molecular mechanisms responsible for hyperinflammation in patients with the severe course of COVID-19.Results: it highlights the similarities between this condition and hyperferritinemic syndrome which allows considering pathogenesis of COVID-19 with the direct involvement of iron metabolism. In the case of COVID-19 infection of moderate severity and especially in its severe forms, it is indicated to use of iron chelators and other methods of free iron elimination.Цель: по данным литературы провести анализ возможных эпидемиологических и молекулярных механизмов, ответственных за гипервоспаление у пациентов с тяжелой формой COVID-19, связанных с нарушением метаболизма железа.Результаты: подчеркивается сходство между COVID-19 и гиперферритинемическим синдромом, что позволяет рассматривать патогенез COVID-19 с прямым участием метаболизма железа. Очевидно, что при инфекции COVID-19 средней степени тяжести и особенно при тяжелых формах использование хелаторов железа и других методов элиминации свободного железа имеет обоснованные показания
НАТРИЙ-КАЛИЙ-ХЛОР-КОТРАНСПОРТ В РЕГУЛЯЦИИ МИОГЕННОГО ТОНУСА СОСУДОВ
The article discusses the data on the functioning of Na+,K+,2Cl– cotransport – the carrier providing electroneutral symport of sodium, potassium and chloride, as well as molecular mechanisms of the regulation and physiological significance of this carrier. We analyzed the novel data on involvement of ubiquitous isoform of Na+,K+,2Cl–cotransporter (NKCC1) in regulation of vascular smooth muscle contraction, and role of this carrier in the regulation of cell volume and intracellular chloride concentration.В статье рассматриваются принципы функционирования Na+,K+,2Cl–-котранспорта – трансмембранного ионного переносчика, осуществляющего электронейтральный симпорт натрия, калия и хлора, молекулярные механизмы его регуляции и физиологическое значение. Приводятся новые данные о роли универсальной изоформы Na+,K+,2Cl–-котранспортера (NKCC1) в регуляции сокращения гладких мышц сосудов, объема клеток и внутриклеточной концентрации хлора
Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV
The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
- …