262 research outputs found

    Sub-Pixel Response Measurement of Near-Infrared Sensors

    Get PDF
    Wide-field survey instruments are used to efficiently observe large regions of the sky. To achieve the necessary field of view, and to provide a higher signal-to-noise ratio for faint sources, many modern instruments are undersampled. However, precision photometry with undersampled imagers requires a detailed understanding of the sensitivity variations on a scale much smaller than a pixel. To address this, a near-infrared spot projection system has been developed to precisely characterize near-infrared focal plane arrays and to study the effect of sub-pixel non uniformity on precision photometry. Measurements of large format near-infrared detectors demonstrate the power of this system for understanding sub-pixel response.Comment: 9 pages, 13 figures, submitted to PAS

    Streamlined Calibrations of the ATLAS Precision Muon Chambers for Initial LHC Running

    Full text link
    The ATLAS Muon Spectrometer is designed to measure the momentum of muons with a resolution of dp/p = 3% and 10% at 100 GeV and 1 TeV momentum respectively. For this task, the spectrometer employs 355,000 Monitored Drift Tubes (MDTs) arrayed in 1200 Chambers. Calibration (RT) functions convert drift time measurements into tube-centered impact parameters for track segment reconstruction. RT functions depend on MDT environmental parameters and so must be appropriately calibrated for local chamber conditions. We report on the creation and application of a gas monitor system based calibration program for muon track reconstruction in the LHC startup phase.Comment: 25 pages, 21 figure

    Construction of Precision sMDT Detector for ATLAS Muon Spectrometer Upgrade

    Full text link
    This paper describes the small-diameter monitored drift-tube detector construction at the University of Michigan as a contribution to the ATLAS Muon Spectrometer upgrade for the high-luminosity Large Hadron Collider at CERN. Measurements of the first 30 chambers built at Michigan show that the drift tube wire position accuracy meets the specification of 20 microns. The positions of the platforms for alignment and magnetic field sensors are all installed well within the required precision. The cosmic ray test measurements show single wire tracking resolution of 100 +- 7 microns with an average detection efficiency above 99 %. The infrastructure, tooling, techniques, and procedures for chamber production are described in detail. The results from the chamber quality control tests of the first 30 constructed chambers are reported.Comment: 35 pages, 41 figure

    Dark Energy Survey Year 6 Results: Intra-Cluster Light from Redshift 0.2 to 0.5

    Full text link
    Using the full six years of imaging data from the Dark Energy Survey, we study the surface brightness profiles of galaxy cluster central galaxies and intra-cluster light. We apply a ``stacking'' method to over four thousand galaxy clusters identified by the redMaPPer cluster finding algorithm in the redshift range of 0.2 to 0.5. This yields high signal-to-noise radial profile measurements of the central galaxy and intra-cluster light out to 1 Mpc from the cluster center. Using redMaPPer richness as a cluster mass indicator, we find that the intra-cluster light brightness has a strong mass dependence throughout the 0.2 to 0.5 redshift range, and the dependence grows stronger at a larger radius. In terms of redshift evolution, we find some evidence that the central galaxy, as well as the diffuse light within the transition region between the cluster central galaxy and intra-cluster light within 80 kpc from the center, may be growing over time. At larger radii, more than 80 kpc away from the cluster center, we do not find evidence of additional redshift evolution beyond the cluster mass dependence, which is consistent with the findings from the IllustrisTNG hydrodynamic simulation. We speculate that the major driver of intra-cluster light growth, especially at large radii, is associated with cluster mass growth. Finally, we find that the color of the cluster central galaxy and intra-cluster light displays a radial gradient that becomes bluer at a larger radius, which is consistent with a stellar stripping and disruption origin of intra-cluster light as suggested by simulation studies.Comment: Submitted to MNRA

    Chemical Analysis of the Brightest Star of the Cetus II Ultra-Faint Dwarf Galaxy Candidate

    Full text link
    We present a detailed chemical abundance analysis of the brightest star in the ultra-faint dwarf (UFD) galaxy candidate Cetus II from high-resolution Magellan/MIKE spectra. For this star, DES J011740.53-173053, abundances or upper limits of 18 elements from Carbon to Europium are derived. Its chemical abundances generally follow those of other UFD galaxy stars, with a slight enhancement of the alpha-elements (Mg, Si, and Ca) and low neutron-capture element (Sr, Ba, Eu) abundances supporting the classification of Cetus II as a likely UFD. The star exhibits lower Sc, Ti, and V abundances than Milky Way (MW) halo stars with similar metallicity. This signature is consistent with yields from a supernova (SN) originating from a star with a mass of ~11.2 solar masses. In addition, the star has a Potassium abundance of [K/Fe] = 0.81 which is somewhat higher than the K abundances of MW halo stars with similar metallicity, a signature which is also present in a number of UFD galaxies. A comparison including globular clusters (GC) and stellar stream stars suggests that high K is a specific characteristic for some UFD galaxy stars and can thus be used to help classify objects as UFD galaxies.Comment: 15 pages, 7 figures, 5 tables, accepted to Ap

    Photometric Properties of Jupiter Trojans Detected by the Dark Energy Survey

    Get PDF
    The Jupiter Trojans are a large group of asteroids that are coorbiting with Jupiter near its L4 and L5 Lagrange points. The study of Jupiter Trojans is crucial for testing different models of planet formation that are directly related to our understanding of solar system evolution. In this work, we select known Jupiter Trojans listed by the Minor Planet Center from the full six years data set (Y6) of the Dark Energy Survey (DES) to analyze their photometric properties. The DES data allow us to study Jupiter Trojans with a fainter magnitude limit than previous studies in a homogeneous survey with griz band measurements. We extract a final catalog of 573 unique Jupiter Trojans. Our sample include 547 asteroids belonging to L5. This is one of the largest analyzed samples for this group. By comparing with the data reported by other surveys we found that the color distribution of L5 Trojans is similar to that of L4 Trojans. We find that L5 Trojans' g - i and g - r colors become less red with fainter absolute magnitudes, a trend also seen in L4 Trojans. Both the L4 and L5 clouds consistently show such a color-size correlation over an absolute magnitude range 11 < H < 18. We also use DES colors to perform taxonomic classifications. C- and P-type asteroids outnumber D-type asteroids in the L5 Trojans DES sample, which have diameters in the 5-20 km range. This is consistent with the color-size correlation

    The MADPSZ catalogue of Planck clusters over the DES region: extending to lower mass and higher redshift

    Full text link
    We present the first systematic follow-up of Planck Sunyaev-Zeldovich effect (SZE) selected candidates down to signal-to-noise (S/N) of 3 over the 5000 deg2^2 covered by the Dark Energy Survey. Using the MCMF cluster confirmation algorithm, we identify optical counterparts, determine photometric redshifts and richnesses and assign a parameter, fcontf_{\rm cont}, that reflects the probability that each SZE-optical pairing represents a real cluster rather than a random superposition of physically unassociated systems. The new MADPSZ cluster catalogue consists of 1092 MCMF confirmed clusters and has a purity of 85%. We present the properties of subsamples of the MADPSZ catalogue that have purities ranging from 90% to 97.5%, depending on the adopted fcontf_{\rm cont} threshold. M500M_{500} halo mass estimates, redshifts, richnesses, and optical centers are presented for all MADPSZ clusters. The MADPSZ catalogue adds 828 previously unknown Planck identified clusters over the DES footprint and provides redshifts for an additional 50 previously published Planck selected clusters with S/N>4.5. Using the subsample with spectroscopic redshifts, we demonstrate excellent cluster photo-zz performance with an RMS scatter in Δz/(1+z)\Delta z/(1+z) of 0.47%. Our MCMF based analysis allows us to infer the contamination fraction of the initial S/N>3 Planck selected candidate list, which is 50%. We present a method of estimating the completeness of the MADPSZ cluster sample and fcontf_{\rm cont} selected subsamples. In comparison to the previously published Planck cluster catalogues. this new S/N >> 3 MCMF confirmed cluster catalogue populates the lower mass regime at all redshifts and includes clusters up to z∌\sim1.3.Comment: 20 pages, 5 Appendices, 17 figures, submitted to MNRA

    The PSZ-MCMF catalogue of Planck clusters over the des region

    Get PDF
    We present the first systematic follow-up of Planck Sunyaev–Zeldovich effect (SZE) selected candidates down to signal-to-noise (S/N) of 3 over the 5000 deg2 covered by the Dark Energy Survey. Using the MCMF cluster confirmation algorithm, we identify optical counterparts, determine photometric redshifts, and richnesses and assign a parameter, fcont, that reflects the probability that each SZE-optical pairing represents a random superposition of physically unassociated systems rather than a real cluster. The new PSZ-MCMF cluster catalogue consists of 853 MCMF confirmed clusters and has a purity of 90 per cent. We present the properties of subsamples of the PSZ-MCMF catalogue that have purities ranging from 90 per cent to 97.5 per cent, depending on the adopted fcont threshold. Halo mass estimates M500, redshifts, richnesses, and optical centres are presented for all PSZ-MCMF clusters. The PSZ-MCMF catalogue adds 589 previously unknown Planck identified clusters over the DES footprint and provides redshifts for an additional 50 previously published Planck-selected clusters with S/N>4.5. Using the subsample with spectroscopic redshifts, we demonstrate excellent cluster photo-z performance with an RMS scatter in Δz/(1 + z) of 0.47 per cent. Our MCMF based analysis allows us to infer the contamination fraction of the initial S/N>3 Planck-selected candidate list, which is ∌50 per cent. We present a method of estimating the completeness of the PSZ-MCMF cluster sample. In comparison to the previously published Planck cluster catalogues, this new S/N>3 MCMF confirmed cluster catalogue populates the lower mass regime at all redshifts and includes clusters up to z∌1.3
    • 

    corecore