28,092 research outputs found

    Axisymmetric Self-Similar Equilibria of Self-Gravitating Isothermal Systems

    Get PDF
    All axisymmetric self-similar equilibria of self-gravitating, rotating, isothermal systems are identified by solving the nonlinear Poisson equation analytically. There are two families of equilibria: (1) Cylindrically symmetric solutions in which the density varies with cylindrical radius as R^(-alpha), with 0 <= alpha <= 2. (2) Axially symmetric solutions in which the density varies as f(theta)/r^2, where `r' is the spherical radius and `theta' is the co-latitude. The singular isothermal sphere is a special case of the latter class with f(theta)=constant. The axially symmetric equilibrium configurations form a two-parameter family of solutions and include equilibria which are surprisingly asymmetric with respect to the equatorial plane. The asymmetric equilibria are, however, not force-free at the singular points r=0, infinity, and their relevance to real systems is unclear. For each hydrodynamic equilibrium, we determine the phase-space distribution of the collisionless analog.Comment: 13 pages, 7 figures, uses emulateapj.sty. Submitted to Ap

    Gravothermal Catastrophe, an Example

    Full text link
    This work discusses gravothermal catastrophe in astrophysical systems and provides an analytic collapse solution which exhibits many of the catastrophe properties. The system collapses into a trapped surface with outgoing energy radiated to a future boundary, and provides an example of catastrophic collapse.Comment: To appear in Phys. Rev.

    Re-examination of the possible tidal stream in front of the LMC

    Get PDF
    It has recently been suggested that the stars in a vertical extension of the red clump feature seen in LMC color-magnitude diagrams could belong to a tidal stream of material located in front of that galaxy. If this claim is correct, this foreground concentration of stars could contribute significantly to the rate of gravitational microlensing events observed in the LMC microlensing experiments. Here we present radial velocity measurements of stars in this so-called ``vertical red clump'' (VRC) population. The observed stellar sample, it transpires, has typical LMC kinematics. It is shown that it is improbable that an intervening tidal stream should have the same distribution of radial velocities as the LMC, which is consistent with an earlier study that showed that the VRC feature is more likely a young stellar population in the main body of that galaxy. However, the kinematic data do not discriminate against the possibility that the VRC is an LMC halo population.Comment: 10 pages, 3 figures, 1 table. Accepted for publication in ApJ

    Non-local two-photon correlations using interferometers physically separated by 35 meters

    Full text link
    An experimental demonstration of quantum correlations is presented. Energy and time entangled photons at wavelengths of 704 and 1310 nm are produced by parametric downconversion in KNbO3 and are sent through optical fibers into a bulk-optical (704 nm) and an all-fiber Michelson-interferometer (1310 nm), respectively. The two interferometers are located 35 meters aside from one another. Using Faraday-mirrors in the fiber-interferometer, all birefringence effects in the fibers are automatically compensated. We obtained two-photon fringe visibilities of up to 95 % from which one can project a violation of Bell's inequality by 8 standard deviations. The good performance and the auto-aligning feature of Faraday-mirror interferometers show their potential for a future test of Bell's inequalities in order to examine quantum-correlations over long distances.Comment: 9 pages including 3 postscript figures, to be published in Europhys. Let

    Binary continuous random networks

    Full text link
    Many properties of disordered materials can be understood by looking at idealized structural models, in which the strain is as small as is possible in the absence of long-range order. For covalent amorphous semiconductors and glasses, such an idealized structural model, the continuous-random network, was introduced 70 years ago by Zachariasen. In this model, each atom is placed in a crystal-like local environment, with perfect coordination and chemical ordering, yet longer-range order is nonexistent. Defects, such as missing or added bonds, or chemical mismatches, however, are not accounted for. In this paper we explore under which conditions the idealized CRN model without defects captures the properties of the material, and under which conditions defects are an inherent part of the idealized model. We find that the density of defects in tetrahedral networks does not vary smoothly with variations in the interaction strengths, but jumps from close-to-zero to a finite density. Consequently, in certain materials, defects do not play a role except for being thermodynamical excitations, whereas in others they are a fundamental ingredient of the ideal structure.Comment: Article in honor of Mike Thorpe's 60th birthday (to appear in J. Phys: Cond Matt.

    The no-signaling condition and quantum dynamics

    Get PDF
    We show that the basic dynamical rules of quantum physics can be derived from its static properties and the condition that superluminal communication is forbidden. More precisely, the fact that the dynamics has to be described by linear completely positive maps on density matrices is derived from the following assumptions: (1) physical states are described by rays in a Hilbert space, (2) probabilities for measurement outcomes at any given time are calculated according to the usual trace rule, (3) superluminal communication is excluded. This result also constrains possible non-linear modifications of quantum physics.Comment: 4 page

    A Dirac sea pilot-wave model for quantum field theory

    Get PDF
    We present a pilot-wave model for quantum field theory in which the Dirac sea is taken seriously. The model ascribes particle trajectories to all the fermions, including the fermions filling the Dirac sea. The model is deterministic and applies to the regime in which fermion number is superselected. This work is a further elaboration of work by Colin, in which a Dirac sea pilot-wave model is presented for quantum electrodynamics. We extend his work to non-electromagnetic interactions, we discuss a cut-off regularization of the pilot-wave model and study how it reproduces the standard quantum predictions. The Dirac sea pilot-wave model can be seen as a possible continuum generalization of a lattice model by Bell. It can also be seen as a development and generalization of the ideas by Bohm, Hiley and Kaloyerou, who also suggested the use of the Dirac sea for the development of a pilot-wave model for quantum electrodynamics.Comment: 41 pages, no figures, LaTex, v2 minor improvements and addition

    The Fulling-Unruh effect in general stationary accelerated frames

    Full text link
    We study the generalized Unruh effect for accelerated reference frames that include rotation in addition to acceleration. We focus particularly on the case where the motion is planar, with presence of a static limit in addition to the event horizon. Possible definitions of an accelerated vacuum state are examined and the interpretation of the Minkowski vacuum state as a thermodynamic state is discussed. Such athermodynamic state is shown to depend on two parameters, the acceleration temperature and a drift velocity, which are determined by the acceleration and angular velocity of the accelerated frame. We relate the properties of Minkowski vacuum in the accelerated frame to the excitation spectrum of a detector that is stationary in this frame. The detector can be excited both by absorbing positive energy quanta in the "hot" vacuum state and by emitting negative energy quanta into the "ergosphere" between the horizon and the static limit. The effects are related to similar effects in the gravitational field of a rotating black hole.Comment: Latex, 39 pages, 5 figure

    Light May Have Triggered a Period of Net Heterotrophy in Lake Superior

    Get PDF
    Recent studies of Lake Superior, the Earth\u27s largest freshwater lake by surface area, describe it as net heterotrophic (primary production \u3c community respiration), making it a net source of carbon dioxide (CO2) to the atmosphere. This conclusion is largely based on measurements made between 1998 and 2001. We present a long‐term (1968–2016) analysis of ice‐free (April–November) surface oxygen (O2) saturation data collected by monitoring agencies. These data indicate that Lake Superior\u27s surface waters are typically supersaturated with dissolved O2 from May to September (May–September mean is 103.5% ± 0.6%; pooled mean from April, October, and November is 97.6% ± 1.1%, standard error of the mean). However, these data also support prior studies which describe a state of net heterotrophy from 1998 to 2001. We investigated potential triggers for a transient heterotrophic period and discuss the sources of organic carbon necessary to fuel net heterotrophy in a large oligotrophic lake. We conclude that net heterotrophy likely resulted from an increase in light period and penetration driven by declines in cloud cover, increases in water clarity, and a reduction of winter ice cover following the 1997–1998 El Niño. Together, these could have depleted a pre‐existing pool of dissolved organic carbon (DOC) via photomineralization and/or photochemical degradation. Our results indicate that Lake Superior is typically net autotrophic (calculated annual CO2 influx = ∼ 0.4 Tg C). These results highlight how water clarity and aquatic DOC pools may interact to induce net metabolic shifts in large oligotrophic aquatic ecosystems
    corecore