1,336 research outputs found

    Connecting protein and mRNA burst distributions for stochastic models of gene expression

    Full text link
    The intrinsic stochasticity of gene expression can lead to large variability in protein levels for genetically identical cells. Such variability in protein levels can arise from infrequent synthesis of mRNAs which in turn give rise to bursts of protein expression. Protein expression occurring in bursts has indeed been observed experimentally and recent studies have also found evidence for transcriptional bursting, i.e. production of mRNAs in bursts. Given that there are distinct experimental techniques for quantifying the noise at different stages of gene expression, it is of interest to derive analytical results connecting experimental observations at different levels. In this work, we consider stochastic models of gene expression for which mRNA and protein production occurs in independent bursts. For such models, we derive analytical expressions connecting protein and mRNA burst distributions which show how the functional form of the mRNA burst distribution can be inferred from the protein burst distribution. Additionally, if gene expression is repressed such that observed protein bursts arise only from single mRNAs, we show how observations of protein burst distributions (repressed and unrepressed) can be used to completely determine the mRNA burst distribution. Assuming independent contributions from individual bursts, we derive analytical expressions connecting means and variances for burst and steady-state protein distributions. Finally, we validate our general analytical results by considering a specific reaction scheme involving regulation of protein bursts by small RNAs. For a range of parameters, we derive analytical expressions for regulated protein distributions that are validated using stochastic simulations. The analytical results obtained in this work can thus serve as useful inputs for a broad range of studies focusing on stochasticity in gene expression

    Reliability of Decision Support in Cross-spectral Biometric-enabled Systems

    Full text link
    This paper addresses the evaluation of the performance of the decision support system that utilizes face and facial expression biometrics. The evaluation criteria include risk of error and related reliability of decision, as well as their contribution to the changes in the perceived operator's trust in the decision. The relevant applications include human behavior monitoring and stress detection in individuals and teams, and in situational awareness system. Using an available database of cross-spectral videos of faces and facial expressions, we conducted a series of experiments that demonstrate the phenomenon of biases in biometrics that affect the evaluated measures of the performance in human-machine systems.Comment: submitted to IEEE International Conference on Systems, Man, and Cybernetic

    Graphene-coated holey metal films: tunable molecular sensing by surface plasmon resonance

    Get PDF
    We report on the enhancement of surface plasmon resonances in a holey bidimensional grating of subwavelength size, drilled in a gold thin film coated by a graphene sheet. The enhancement originates from the coupling between charge carriers in graphene and gold surface plasmons. The main plasmon resonance peak is located around 1.5 microns. A lower constraint on the gold-induced doping concentration of graphene is specified and the interest of this architecture for molecular sensing is also highlighted.Comment: 5 pages, 4 figures, Final version. Published in Applied Physics Letter

    Nonlinear dynamics of beta induced Alfv\'en eigenmode driven by energetic particles

    Full text link
    Nonlinear saturation of beta induced Alfv\'en eigenmode, driven by slowing down energetic particles via transit resonance, is investigated by the nonlinear hybrid magnetohyrodynamic gyro-kinetic code (XHMGC). Saturation is characterized by frequency chirping and symmetry breaking between co- and counter-passing particles, which can be understood as the the evidence of resonance-detuning. The scaling of the saturation amplitude with the growth rate is also demonstrated to be consistent with radial resonance detuning due to the radial non-uniformity and mode structure

    No Need for a Lexicon? Evaluating the Value of the Pronunciation Lexica in End-to-End Models

    Full text link
    For decades, context-dependent phonemes have been the dominant sub-word unit for conventional acoustic modeling systems. This status quo has begun to be challenged recently by end-to-end models which seek to combine acoustic, pronunciation, and language model components into a single neural network. Such systems, which typically predict graphemes or words, simplify the recognition process since they remove the need for a separate expert-curated pronunciation lexicon to map from phoneme-based units to words. However, there has been little previous work comparing phoneme-based versus grapheme-based sub-word units in the end-to-end modeling framework, to determine whether the gains from such approaches are primarily due to the new probabilistic model, or from the joint learning of the various components with grapheme-based units. In this work, we conduct detailed experiments which are aimed at quantifying the value of phoneme-based pronunciation lexica in the context of end-to-end models. We examine phoneme-based end-to-end models, which are contrasted against grapheme-based ones on a large vocabulary English Voice-search task, where we find that graphemes do indeed outperform phonemes. We also compare grapheme and phoneme-based approaches on a multi-dialect English task, which once again confirm the superiority of graphemes, greatly simplifying the system for recognizing multiple dialects

    On the number of generators for transeunt triangles

    Get PDF
    This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. As such, it is in the public domain, and under the provisions of Title 17, United States Code, Section 105, may not be copyrighted.Discrete Applied Mathematics, 108, 2001, pp. 309-316A transeunt triangle for size n consists of (n+1)x(n+1)x(n+1) 0's and 1's whose values are determined by the sum modulo 2 of two other local values. For a given n, two transeunt triangles of size n can be combined using the element-by-element modulo 2 sum to generate a third transeunt triangle. We show that, for large n ..
    corecore