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Abstract

A transeunt triangle of size n consists of (n+1)× (n+1)× (n+1) 0’s and 1’s whose
values are determined by the sum modulo 2 of two other local values. For a given n,
two transeunt triangles of size n can be combined using the element-by-element modulo
2 sum to generate a third transeunt triangle. We show that, for large n, the 1

32n+1

transeunt triangles of size n can be generated from a set of only n
3 generator transeunt

triangles.

Index Terms. Symmetric functions, Reed-Muller expansion, transeunt triangle.

1 Introduction

A transeunt triangle of size n is completely specified by a binary n + 1-tuple that forms the
first row. The second row, a binary n-tuple, is formed by the pairwise modulo 2 sum of
adjacent elements in the first row. Similarly, elements of all other rows are specified as the
modulo 2 sum of adjacent elements in the row above it. The last row is a single 0 or 1. Fig.
1 shows all transeunt triangles of size 3. Here, a transeunt triangle is not repeated if it is
the same as the rotation of another triangle in the figure.
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Figure 1: All transeunt triangles of size 3.

Note that a transeunt triangle can be formed from any of its three sides. That is, if
instead one begins with a side produced by the process described above, a rotated version
of the same transeunt triangle results.

The transeunt triangle is the basis of an efficient algorithm for determining the minimal
fixed polarity Reed-Muller canonical expansion of a totally symmetric switching function
[1], [3], [4]. An n-variable totally symmetric function is specified by a binary n + 1-tuple
that becomes one of the triangle’s sides. Certain rectangles within the transeunt triangle
each represent a circuit implementation of the symmetric function described by the edge.
Transeunt triangles are related to the Sierpiński’s Gasket [2]. If the first row has exactly
one 1, a Sierpiński’s Gasket forms below that 1. This embedded triangle is Pascal’s triangle
modulo 2. Transeunt triangles are also related to a specific one-dimensional cellular automata
system. In such systems, the next state (0 or 1) of every cell is the modulo 2 sum of its
present state and the present state of its right neighbor. This particular system is Rule 102 in
Wolfram’s classification scheme [5], which belongs to the class of additive cellular automata
systems. The transeunt triangle shows the sequence of states in such a cellular automata
system, where the first row is the initial state.

We are interested in determining the minimum number of generators of all transeunt
triangles of size n. That is, given two transeunt triangles, a third can be generated by
forming the bit-by-bit modulo 2 sum. For example, forming the bit-by-bit modulo 2 sum of
any triangle with itself generates 0, the all 0 transeunt triangle. All eight transeunt triangles
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Figure 2: Generator transeunt triangles for all transeunt triangles of size 3.

of size 3 in Fig. 1 can be formed as some combination, including rotated versions, of the two
transeunt triangles shown in Fig. 2. Since one transeunt triangle is not sufficient to produce
all others, the minimum number of generators needed is 2. In the general case, all transeunt
triangles can be generated from transeunt triangles with a single 1 on an edge. Therefore, it
is sufficient to have n + 1 generator transeunt triangles (or even less considering transeunt
triangles where two different binary n+1-tuples with exactly one 1 occur as sides). However,
one can do better.

Definition 1.1. Let gapprox(n) and gexact(n) be two functions of n. gexact(n) ∼ gapprox(n) if
and only if

lim
n→∞

gapprox(n)

gexact(n)
= 1. (1.1)

In what follows, gapprox(n) is a simple, approximate expression for gexact(n).

Theorem 1.1. The number Ntt(n) of unoriented transeunt triangles of size n is

Ntt(n) ∼ 1

3
2n+1, (1.2)

and the minimum number τtt(n) of (generator) transeunt triangles needed to generate these
triangles is

τtt(n) ∼ n

3
. (1.3)

2 Number of transeunt triangles and self-similar transe-

unt triangles

In this section, we prove the first part of Theorem 1.1, namely (1.2). Note that four of the
transeunt triangles in Fig. 1 (those in the left column) are unchanged by a rotation of 120◦

and 240◦.

Definition 2.1. A transeunt triangle T is self-similar if and only if a rotation of 120◦ and
240◦ leaves T unchanged.

Theorem 2.1. The number Nss(n) of self-similar transeunt triangles of size n is

Nss(n) = 2bn−1
3 c+(n−1) mod 3 . (2.1)
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Proof For n = 1, 2, and 3, the number of self-similar transeunt triangles is 1 ([00]), 2 ([000]
& [010]), and 4 ([0000], [0110], [1101], & [1011]), respectively. For n = 1, 2, and 3, (2.1)
yields 1, 2, and 4, respectively. Consider a self-similar transeunt triangle of size n > 3. It
embeds another triangle T ′ of size (n− 2)× (n− 2)× (n− 2), where n− 2 > 1. Since T is
invariant under rotation, so also is T ′.

Given any (n − 2) × (n − 2) × (n − 2) self-similar triangle T ′, there are two ways to
form an (n + 1)× (n + 1)× (n + 1) self-similar triangle T (i.e. two circumferences that are
complements). Thus,

Nss(n) = 2Nss(n− 3). (2.2)

But, this implies (2.1), since substituting the inductive hypothesis,

Nss(n− 3) = 2bn−4
3 c+(n−4)mod 3, (2.3)

into (2.2), yields (2.1).

Theorem 2.2. The number of unoriented transeunt triangles of size n is

Ntt(n) =
2n+1 + 2bn+2

3 c+(n−1)mod 3

3
. (2.4)

Proof Among the three sides in a transeunt triangle of size n are one, two, or three distinct
binary n+1-tuples. As shown in Fig. 1, one and three are possible. For example, a transeunt
triangle with one tuple is self-similar. Transeunt triangles with exactly two distinct tuples
are impossible because of symmetry. It follows that the number of unoriented transeunt
triangles is

Ntt(n) =
2n+1 −Nss(n)

3
+ Nss(n) =

2n+1 + 2Nss(n)

3
. (2.5)

Substituting (2.3) into (2.5) yields (2.4)

Note that Ntt(n) ∼ 2n+1

3
. As the number n of variables increases without bound, the num-

ber of unoriented transeunt triangles approaches one-third the number of oriented transeunt
triangles. This proves the first part of Theorem 1.1. This shows that most large transeunt
triangles are not self-similar.

3 Generators of transeunt triangles

In this section, we prove the second part of Theorem 1.1, namely (1.3). Given a transeunt
triangle T , T120 and T240 are T rotated by 120◦ and 240◦, respectively. Let ⊕ be the bit-by-bit
modulo 2 sum of two transeunt triangles.
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Lemma 3.1. Given any transeunt triangle T , T ⊕ T120 ⊕ T240 is a self-similar transeunt
triangle.

Definition 3.1. Transeunt triangle T is a Tss-self-similar-group transeunt triangle, where
Tss = T ⊕ T120 ⊕ T240.

Since Tss⊕Tss120⊕Tss240 = Tss, Tss is a Tssself-similar-group transeunt triangle. Further,
there is exactly one self-similar Tss-self-similar-group transeunt triangle, namely Tss.

Definition 3.2. T is a basic transeunt triangle if it is a Tss-self-similar-group transeunt
triangle, where Tss = 0, the transeunt triangle with all 0 entries.

Given transeunt triangle T , T ′ = T ⊕ Tss is a basic transeunt triangle, since T ′ ⊕ T ′
120 ⊕

T ′
240 = (T ⊕ Tss)⊕ (T120 ⊕ T120ss)⊕ (T240 ⊕ T240ss) = Tss ⊕ Tss = 0. Further, T ′ = T ⊕ T ⊕

T120 ⊕ T240 = T120 ⊕ T240 = T ⊕ T120.

Definition 3.3. Transeunt triangle T is a Tb-basic-group transeunt triangle, where Tb =
T ⊕ T120.

Theorem 3.2. The number of unoriented basic transeunt triangles of size n is

Nb(n) =
4dn

3 e + 2

3
. (3.1)

Proof For every unoriented basic transeunt triangle T ′, there is a unique triangle in self-
similar-group Tss, that is obtained as T ′ ⊕ Tss. Similarly, for every unoriented transeunt
triangle T ′′ in self-similar-group T ′′

ss, there is a unique unoriented basic transeunt triangle,
that is obtained as T ′′⊕T ′′

ss. Thus, each self-similar-group represents an equal sized block in
a partition of all unoriented transeunt triangles. Therefore, the number of unoriented basic
transeunt triangles is

Nb(n) =
Ntt(n)

Nss(n)
. (3.2)

Substituting (2.4) and (2.1) into (3.2) yields (3.1).
From Theorem 3.2, Nb(n) ∼ 1

3
4d

n
3
e. From Definitions 3.1 and 3.3, it follows that each

transeunt triangle T is characterized by the self-similar transeunt triangle Tss and by the
basic transeunt triangle Tb, and that

T = Tss ⊕ Tb . (3.3)

Therefore, if we can generate all self-similar and all basic transeunt triangles, we can
generate all transeunt triangles. Both the set of basic transeunt triangles and the set of self-
similar transeunt triangles are closed under the ⊕ operation. Thus, T ′′ = T ⊕ T ′ is a basic
transeunt triangle if T and T ′ are basic, and T ′′ is self-similar if T and T ′ are self-similar.
Thus, each set can be generated from a subset. Indeed,
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Theorem 3.3. The set of self-similar transeunt triangles of size n > 1 can be generated
from a set of α(n) nonredundant self-similar generator transeunt triangles, where

α(n) =

⌊
n− 1

3

⌋
+ (n− 1) mod 3. (3.4)

Proof There exists a set Sss = {T1, T2, . . . Tm} of self-similar transeunt triangles from which
all self-similar transeunt triangles can be generated as the modulo 2 sum of elements from Sss

(e.g. Sss can be all self-similar transeunt triangles). If Sss is nonredundant, then no Ti ∈ S
is the modulo 2 sum of any other transeunt triangles in S. Since Ti⊕Ti = 0, no element in S
is chosen more than once. It follows that m ≥ ⌊

n−1
3

⌋
+ (n− 1) mod 3; otherwise, there are

not enough combinations (2m) of transeunt triangles in S to form all 2bn−1
3 c+(n−1) mod 3 self-

similar transeunt triangles (for convenience, we substitute 0 for the combination consisting
of choosing no element of S). We show that equality holds by showing that the modulo 2
sum of a combination of elements from S is distinct from any other combination. On the
contrary, suppose

Ti1⊕Ti2⊕ . . .⊕Tiα⊕Tj1⊕Tj2⊕ . . .⊕Tjβ
= Tk1⊕Tk2⊕ . . .⊕Tkγ ⊕Tj1⊕Tj2⊕ . . .⊕Tjβ

, (3.5)

where the only T ’s common to both sides of (3.5) are Tj1 , Tj2 , . . . , and Tjβ
. It follows that

Ti1 ⊕ Ti2 ⊕ . . .⊕ Tiα = Tk1 ⊕ Tk2 ⊕ . . .⊕ Tkγ , (3.6)

and that

Ti1 = Tk1 ⊕ Tk2 ⊕ . . .⊕ Tkγ ⊕ Ti2 ⊕ . . .⊕ Tiα . (3.7)

But, this is impossible, as no element of S is the modulo 2 sum of other elements of S. The
theorem statement follows.

Theorem 3.4. The set of unoriented basic transeunt triangles of size n can be generated
from a set of β(n) nonredundant unoriented basic generator transeunt triangles, where

β(n) =
⌈n

3

⌉
. (3.8)

Proof There exists a set Sb = {T1, T2, . . . Tp} of basic generator transeunt triangles from
which all basic transeunt triangles can be generated as the modulo 2 sum of elements from
Sb. The all 0 triangle can be generated as the element-by-element modulo 2 sum of any

non-zero generator triangle with itself. The remaining (4dn
3 e−1)/3 non-zero basic transeunt

triangles can be generated as follows. Each generator transeunt triangle T can be used in
four ways 1. omitted, 2. as T , 3. as T120, and 4. as T240. For each combination of at least
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one generator, rotating all generator triangles by 120◦ or by 240◦ creates a resulting triangle
that is rotated by 120◦ or 240◦, respectively; however this produces the same unoriented

triangle. This accounts for the divisor of 3 in (4dn
3 e − 1)/3. The one exception, where all

generator triangles are omitted, accounts for the −1 in (4dn
3 e−1)/3. The argument regarding

uniqueness of combinations is similar to that of Theorem 3.3.

For Sb and Sss, the set of basic and self-similar generator transeunt triangles, respectively,
we can form a set Sb/ss = {Tb/ss = Tb⊕Tss|Tb ∈ Sb, Tss ∈ Sss}. We can then form every basic
generator transeunt triangle and every self-similar transeunt triangle, as Tb/ss120 ⊕ Tb/ss240

and Tb/ss ⊕ Tb/ss120 ⊕ Tb/ss240, respectively. From the generator triangles, we can form all
basic and all self-similar transeunt triangles. This proves the following.

Theorem 3.5. All basic and all self-similar transeunt triangles can be generated from γ(n)
generator transeunt triangles, where

γ(n) = max

{⌈n

3

⌉
,

⌊
n− 1

3

⌋
+ (n− 1) mod 3

}
. (3.9)

From all basic and all self-similar transeunt triangles, we can generate all transeunt
triangles. Note that γ(n) is also the minimum number of transeunt triangles from which
all transeunt triangles can be generated. On the contrary, with fewer than γ(n) generators,
it is impossible to generate either all basic and/or all self-similar transeunt triangles, as
observed in the proofs of Theorems 3.3 and 3.4. Observing that γ(n) approaches n

3
as n

increases without bound proves the second part of Theorem 1.1. Table 1 shows the number
of transeunt triangle, the number of self-similar transeunt triangles, and the number of basic
transeunt triangles, for 1 ≤ n ≤ 20.

4 Concluding remarks

In this paper, we have shown that the minimum number of generators of transeunt triangles is
small, approaching n

3
as the size n increases without bound. An appreciation for the reduction

achievable can be obtained by an examination of Table 1, which shows, for example, that
the number of transeunt triangles of size n = 20 is 699,136, while the minimum number of
generators for this set is only 7.
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