36 research outputs found

    Inter-basin transfers as a supply option: the end of an era?

    Get PDF
    International audienceThis chapter discusses the evolving role of interbasin transfers (IBT) in urban water management. After providing an historical overview of IBT development, the chapter describes how IBTs are challenged by a change in the technological and socio-economic context. The emergence of alternative technologies, such as desalination, wastewater reclamation and reuse, or managed artificial groundwater recharge is reducing the attractiveness of IBTs. Water utilities are also becoming increasingly aware that water conservation programs can save volumes of water at a much cheaper cost than IBT. Various international examples are used to show that IBTs trigger increasing concerns from communities involved or affected, in particular related to the environmental impact on donor and receiving river basins, the economic impact on donor regions, the impact on local cultures and livelihoods, how costs and benefits are distributed (social justice), and issues related to public participation. The chapter concludes by looking ahead at new and more efficient uses of existing IBTs. As conjunctive use management approaches gain support, IBTs will be operated in conjunction with aquifer storage and recovery schemes. They will probably also support the development of emerging water markets, in particular during drought years

    Fault-tolerant design approach for reliable offshore multi-megawatt variable frequency converters

    Get PDF
    Inverters play a key role in realizing reliable multi-megawatt power electronic converters used in offshore applications, as their failure leads to production losses and impairs safety. The performance of high power handing semiconductor devices with high speed control capabilities and redundant configurations helps in realizing a fault-tolerant design. This paper describes the reliability modeling done for an industry standard, 3-level neutral point clamped multi-megawatt inverter, the significance of semiconductor redundancy in reducing inverter failure rates, and proposes methods for achieving static and dynamic redundancy in series connected press pack type insulated gate bipolar transistors (IGBT). It is identified that, with the multi megawatt inverter having 3+2 IGBT in each half leg with dynamic redundancy incorporated, it is possible to reduce the failure rate of the inverter from 53.8% to 15% in 5 years of continuous operation. The simulation results indicate that with dynamic redundancy, it is possible to force an untriggered press pack IGBT to short circuit in <1s, when operated with a pulse width modulation frequency of 1kHz

    An approach to operational risk modeling and estimation of safety levels for deep water work class remotely operated vehicle—A case study with reference to ROSUB 6000

    Get PDF
    This paper presents a quantitative approach to operational risk modeling and estimation of safety integrity levels, required for the deep water electric work class remotely operated vehicle with reference to ROSUB6000 developed by the National Institute of Ocean Technology, India. ROSUB6000 is used for carrying out bathymetric surveys, gas hydrate surveys, poly-metallic nodule exploration, salvage operations, and meeting emergency response situations. The system is expected to be in operation for a period of 300h per year, and has to be extremely safe and reliable. Methods and models for the quantitative assessment of operational safety and estimation of safety integrity levels for ROV are seldom available in the deep water intervention industry. The safety instrumented functions implemented in the ROV should be able to meet the SIL requirements of specific mission. This study indicates that the required safety factors are implemented into the design of the state-of-the-art ROV ROSUB 6000, considering IEC 61508/61511 recommendations on Health, Safety and Environment and it is found that the system is able to meet the required SIL for seven identified functions. This paper gives the design and safety engineers in the ROV industry, an overview of the numerical operational risk assessment methods and safety-centered ROV engineering

    Novel methods of temperature compensation for permanent magnet sensors and actuators

    No full text
    In this paper, the adverse effects of variation in operating temperature on the performance of PM sensors and actuators used in aerospace and military applications, and methods to provide inherent temperature compensation by design, are presented. Unlike the conventional shunt compensation, the proposed method uses the direct leakage path between two neighboring permanent magnets. This novel method arrived at after conducting finite element (FE) analysis, is capable of giving complete temperature compensation over the entire operating temperature range. In a gyroscope designed and developed under this scheme, the temperature sensitivity of the torquer scale factor of the gyroscope in an operating temperature range of -60 to +80/spl deg/C is measured to be less than -10 ppm//spl deg/C against the normal value of -450 ppm//spl deg/C, observed in a gyroscope having no inherent temperature compensation

    Assessment of the Reliability of the Indian Tsunami Early Warning System

    No full text
    This paper analyses the reliability of the Indian Tsunami Early Warning System (ITEWS), comprising a 24 × 7 manned and automated center capable of monitoring the seismic, open sea water level and coastal tide levels and disseminating tsunami bulletins with the aid of proven prerun scenario models during a tsunamigenic earthquake. Since its inception in 2007, the ITEWS has undergone technological maturity with reliability as the prime objective. The system is expected to be in operation throughout the year and alerting the entire Indian Ocean rim countries in the event of a tsunami. Based on International Electrotechnical Commission (IEC) 61508 standards and field failure data, quantitative reliability modeling is done for the subsystems, and it is found that the seismic network, tsunami buoy network, and distress information dissemination systems conform to Safety Integrity Level SIL4, while tide gauge stations conform to SIL4 with a maintenance interval of 45 days. In case of the tsunami buoy network, the failure of one tsunami buoy degrades the network to SIL3 and needs to be restored within 8 months. The study provides confidence on ITEWS’s reliable support to tsunami early warning

    Phosphazene-Based Covalent Organic Polymer Decorated with NiCo2O4Nanocuboids as a Trifunctional Electrocatalyst: A Unique Replacement for the Conventional Electrocatalysts

    No full text
    Developing nonprecious metal-based electrocatalysts to convert water into green fuels (H2 and O2) is key to address urgent climate and energy challenges. We have prepared an electrocatalyst by the immobilization of NiCo2O4 on a phosphazene-based covalent organic polymer (P-COP) through a facile hydrothermal method. The elemental composition of the P-COP showed the presence of a greater amount of heteroatoms N (6.62%) and P (5.62%) throughout the polymer support. Scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) were utilized to determine the atomic structure of the nanocuboids, which depicted the formation of an inverse spinel structure. A NiCo2O4-P-COP-based electrode was simultaneously used for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), and it displayed a minimum overpotential of 270 and 130 mV (V vs RHE), respectively, at a current density of 10 mA cm-2. In addition, it acted as an oxygen reduction catalyst with a half-wave potential of 0.83 V (V vs RHE) and a maximum current density of 4.5 mA cm-2. The electrocatalytic activity is comparable with that of the commercially available Pt and RuO2 catalysts. The combined experimental and computational studies confirm that the catalytic centers formed through the interaction between the heteroatoms (N and P) in the phosphazene matrix and metal oxides (Co and Ni) play an important role in its improved durability and electrocatalytic activity
    corecore