13 research outputs found

    Organic–Inorganic Surface Modifications for Titanium Implant Surfaces

    Full text link

    Self-controi of motor activity students of the university

    Full text link
    The article considers the level of physical activity of University students in daily activitiesВ статье рассматривается уровень двигательной активности студентов университета в повседневной деятельности

    Fluorescence Analysis in Microarray Technology

    No full text
    Fluorescence has been the preferred choice for data quantification in biomedical microarray formats since their earliest days. As much as the formats have grown and evolved over the years, the methods in optical analysis have become ever more sophisticated and complex in order to produce more and better output. This review will provide an insight into the most common methods and the state-of-the-art of all areas in microarray fluorescence analysis. Starting with an overview on microarray formats with a focus on their demands on the readout, the most common and useful organic fluorescent stains are discussed before proceeding on to other approaches; the use of semiconductor nanocrystals (quantum dots), polymer and silica nanoparticles and fluorescent proteins. Ways to enhance the intrinsically low signal on biochips have become increasingly important as they offer a sound approach towards the detection of low concentration sample content. The three main categories are presented: amplification using DNA, enzymes, and dendrimers. As much diversity as on the microarrays themselves can be found at the detection device. Standard optical microarray detectors, and non-standard methods using fluorescence anisotropy, fluorescence lifetime imaging (FLIM) and fluorescence resonance energy transfer (FRET), and their advantages and disadvantages are discussed
    corecore