76 research outputs found

    Large-scale magnetic fields in cosmology

    Full text link
    Despite the widespread presence of magnetic fields, their origin, evolution and role are still not well understood. Primordial magnetism sounds appealing but is not problem free. The magnetic implications for the large-scale structure of the universe still remain an open issue. This paper outlines the advantages and shortcomings of early-time magnetogenesis and the typical role of B-fields in linear structure-formation scenarios.Comment: Invited Talk (36th EPS Conference on Plasma Physics, 2009

    Magnetic tension and gravitational collapse

    Full text link
    The gravitational collapse of a magnetised medium is investigated by studying qualitatively the convergence of a timelike family of non-geodesic worldlines in the presence of a magnetic field. Focusing on the field's tension we illustrate how the winding of the magnetic forcelines due to the fluid's rotation assists the collapse, while shear-like distortions in the distribution of the field's gradients resist contraction. We also show that the relativistic coupling between magnetism and geometry, together with the tension properties of the field, lead to a magneto-curvature stress that opposes the collapse. This tension stress grows stronger with increasing curvature distortion, which means that it could potentially dominate over the gravitational pull of the matter. If this happens, a converging family of non-geodesic lines can be prevented from focusing without violating the standard energy conditions.Comment: Typos corrected. Published versio

    Transverse Wave Propagation in Relativistic Two-fluid Plasmas in de Sitter Space

    Full text link
    We investigate transverse electromagnetic waves propagating in a plasma in the de Sitter space. Using the 3+1 formalism we derive the relativistic two-fluid equations to take account of the effects due to the horizon and describe the set of simultaneous linear equations for the perturbations. We use a local approximation to investigate the one-dimensional radial propagation of Alfv\'en and high frequency electromagnetic waves and solve the dispersion relation for these waves numerically.Comment: 19 pages, 12 figure

    Raychaudhuri's equation and aspects of relativistic charged collapse

    Full text link
    We use the Raychaudhuri equation to probe certain aspects related to the gravitational collapse of a charged medium. The aim is to identify the stresses the Maxwell field exerts on the fluid and discuss their potential implications. Particular attention is given to those stresses that resist contraction. After looking at the general case, we consider the two opposite limits of poor and high electrical conductivity. In the former there are electric fields but no currents, while in the latter the situation is reversed. When the conductivity is low, we find that the main agents acting against the collapse are the Coulomb forces triggered by the presence of an excess charge. At the ideal Magnetohydrodynamic (MHD) limit, on the other hand, the strongest resistance seems to come from the tension of the magnetic forcelines. In either case, we discuss whether and how the aforementioned resisting stresses may halt the contraction and provide a set of conditions making this likely to happen.Comment: Revised version, to appear in PR

    Entropy perturbations and large-scale magnetic fields

    Full text link
    An appropriate gauge-invariant framework for the treatment of magnetized curvature and entropy modes is developed. It is shown that large-scale magnetic fields, present after neutrino decoupling, affect curvature and entropy perturbations. The evolution of different magnetized modes is then studied across the matter-radiation transition both analytically and numerically. From the observation that, after equality (but before decoupling) the (scalar) Sachs-Wolfe contribution must be (predominantly) adiabatic, constraints on the magnetic power spectra are deduced. The present results motivate the experimental analysis of more general initial conditions of CMB anisotropies (i.e. mixtures of magnetized adiabatic and isocurvature modes during the pre-decoupling phase). The role of the possible correlations between the different components of the fluctuations is partially discussed.Comment: 43 pages, 9 figure

    Cosmic magnetic fields from velocity perturbations in the early Universe

    Full text link
    We show, using a covariant and gauge-invariant charged multifluid perturbation scheme, that velocity perturbations of the matter-dominated dust Friedmann-Lemaitre-Robertson-Walker (FLRW) model can lead to the generation of cosmic magnetic fields. Moreover, using cosmic microwave background (CMB) constraints, it is argued that these fields can reach strengths of between 10^{-28} and 10^{-29} G at the time the dynamo mechanism sets in, making them plausible seed field candidates.Comment: 11 pages, 1 figure, IOP style, minor changes and typos correcte

    Magnetized Tolman-Bondi Collapse

    Full text link
    We investigate the gravitational implosion of magnetized matter by studying the inhomogeneous collapse of a weakly magnetized Tolman-Bondi spacetime. The role of the field is analyzed by looking at the convergence of neighboring particle worldlines. In particular, we identify the magnetically related stresses in the Raychaudhuri equation and use the Tolman-Bondi metric to evaluate their impact on the collapsing dust. We find that, despite the low energy level of the field, the Lorentz force dominates the advanced stages of the collapse, leading to a strongly anisotropic contraction. In addition, of all the magnetic stresses, those that resist the collapse are found to grow faster.Comment: 6 pages, RevTex; v2: physical interpretation of the results slightly changed, references added, version accepted in Phys. Rev. D (2006

    Gauge invariant Boltzmann equation and the fluid limit

    Full text link
    This article investigates the collisionless Boltzmann equation up to second order in the cosmological perturbations. It describes the gauge dependence of the distribution function and the construction of a gauge invariant distribution function and brightness, and then derives the gauge invariant fluid limit.Comment: 36 page

    Gravito-magnetic amplification in cosmology

    Full text link
    Magnetic fields interact with gravitational waves in various ways. We consider the coupling between the Weyl and the Maxwell fields in cosmology and study the effects of the former on the latter. The approach is fully analytical and the results are gauge-invariant. We show that the nature and the outcome of the gravito-magnetic interaction depends on the electric properties of the cosmic medium. When the conductivity is high, gravitational waves reduce the standard (adiabatic) decay rate of the B-field, leading to its superadiabatic amplification. In poorly conductive environments, on the other hand, Weyl-curvature distortions can result into the resonant amplification of large-scale cosmological magnetic fields. Driven by the gravitational waves, these B-fields oscillate with an amplitude that is found to diverge when the wavelengths of the two sources coincide. We present technical and physical aspects of the gravito-magnetic interaction and discuss its potential implications.Comment: Typos corrected, clarifications added, published in PR

    Noncommutative Quantum Cosmology

    Full text link
    We propose a model for noncommutative quantum cosmology by means of a deformation of minisuperspace. For the Kantowski-Sachs metric we are able to find the exact wave function. We construct wave packets and show that new quantum states that ``compete'' to be the most probable state appear, in clear contrast with the commutative case. A tunneling process could be possible among these states.Comment: 5 pages, 5 figures, revtex4 file, major style changes, to be published in PR
    corecore