284 research outputs found

    Separating spin and charge transport in single wall carbon nanotubes

    Get PDF
    We demonstrate spin injection and detection in single wall carbon nanotubes using a 4-terminal, non-local geometry. This measurement geometry completely separates the charge and spin circuits. Hence all spurious magnetoresistance effects are eliminated and the measured signal is due to spin accumulation only. Combining our results with a theoretical model, we deduce a spin polarization at the contacts of approximately 25 %. We show that the magnetoresistance changes measured in the conventional two-terminal geometry are dominated by effects not related to spin accumulation.Comment: Number of pages: 11 Number of figures:

    Question-answering, relevance feedback and summarisation : TREC-9 interactive track report

    Get PDF
    In this paper we report on the effectiveness of query-biased summaries for a question-answering task. Our summarisation system presents searchers with short summaries of documents, composed of a series of highly matching sentences extracted from the documents. These summaries are also used as evidence for a query expansion algorithm to test the use of summaries as evidence for interactive and automatic query expansion

    The Magneto-coulomb effect in spin valve devices

    Get PDF
    We discuss the influence of the magneto-coulomb effect (MCE) on the magnetoconductance of spin valve devices. We show that MCE can induce magnetoconductances of several per cents or more, dependent on the strength of the coulomb blockade. Furthermore, the MCE-induced magnetoconductance changes sign as a function of gate voltage. We emphasize the importance of separating conductance changes induced by MCE from those due to spin accumulation in spin valve devices.Comment: This paper includes 3 figure

    Controlling the efficiency of spin injection into graphene by carrier drift

    Get PDF
    Electrical spin injection from ferromagnetic metals into graphene is hindered by the impedance mismatch between the two materials. This problem can be reduced by the introduction of a thin tunnel barrier at the interface. We present room temperature non-local spin valve measurements in cobalt/aluminum-oxide/graphene structures with an injection efficiency as high as 25%, where electrical contact is achieved through relatively transparent pinholes in the oxide. This value is further enhanced to 43% by applying a DC current bias on the injector electrodes, that causes carrier drift away from the contact. A reverse bias reduces the AC spin valve signal to zero or negative values. We introduce a model that quantitatively predicts the behavior of the spin accumulation in the graphene under such circumstances, showing a good agreement with our measurements.Comment: 4 pages, 3 color figure

    Electronic spin drift in graphene field effect transistors

    Get PDF
    We studied the drift of electron spins under an applied DC electric field in single layer graphene spin valves in a field effect transport geometry at room temperature. In the metallic conduction regime (n3.5×1016n \simeq 3.5 \times 10^{16} m2^{-2}), for DC fields of about ±\pm70 kV/m applied between the spin injector and spin detector, the spin valve signals are increased/decreased, depending on the direction of the DC field and the carrier type, by as much as ±\pm50%. Sign reversal of the drift effect is observed when switching from hole to electron conduction. In the vicinity of the Dirac neutrality point the drift effect is strongly suppressed. The experiments are in quantitative agreement with a drift-diffusion model of spin transport.Comment: 4 figure

    Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride

    Get PDF
    We present a fast method to fabricate high quality heterostructure devices by picking up crystals of arbitrary sizes. Bilayer graphene is encapsulated with hexagonal boron nitride to demonstrate this approach, showing good electronic quality with mobilities ranging from 17 000 cm^2/V/s at room temperature to 49 000 cm^2/V/s at 4.2 K, and entering the quantum Hall regime below 0.5 T. This method provides a strong and useful tool for the fabrication of future high quality layered crystal devices.Comment: 5 pages, 3 figure

    Transport Gap in Suspended Bilayer Graphene at Zero Magnetic Field

    Get PDF
    We report a change of three orders of magnitudes in the resistance of a suspended bilayer graphene flake which varies from a few kΩ\Omegas in the high carrier density regime to several MΩ\Omegas around the charge neutrality point (CNP). The corresponding transport gap is 8 meV at 0.3 K. The sequence of appearing quantum Hall plateaus at filling factor ν=2\nu=2 followed by ν=1\nu=1 suggests that the observed gap is caused by the symmetry breaking of the lowest Landau level. Investigation of the gap in a tilted magnetic field indicates that the resistance at the CNP shows a weak linear decrease for increasing total magnetic field. Those observations are in agreement with a spontaneous valley splitting at zero magnetic field followed by splitting of the spins originating from different valleys with increasing magnetic field. Both, the transport gap and BB field response point toward spin polarized layer antiferromagnetic state as a ground state in the bilayer graphene sample. The observed non-trivial dependence of the gap value on the normal component of BB suggests possible exchange mechanisms in the system.Comment: 8 pages, 5 figure

    Controlling spin relaxation in hexagonal BN-encapsulated graphene with a transverse electric field

    Full text link
    We experimentally study the electronic spin transport in hBN encapsulated single layer graphene nonlocal spin valves. The use of top and bottom gates allows us to control the carrier density and the electric field independently. The spin relaxation times in our devices range up to 2 ns with spin relaxation lengths exceeding 12 μ\mum even at room temperature. We obtain that the ratio of the spin relaxation time for spins pointing out-of-plane to spins in-plane is τ/τ\tau_{\bot} / \tau_{||} \approx 0.75 for zero applied perpendicular electric field. By tuning the electric field this anisotropy changes to \approx0.65 at 0.7 V/nm, in agreement with an electric field tunable in-plane Rashba spin-orbit coupling

    A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride

    Get PDF
    We present electronic transport measurements of single- and bilayer graphene on commercially available hexagonal boron nitride. We extract mobilities as high as 125 000 cm^2/V/s at room temperature and 275 000 cm^2/V/s at 4.2 K. The excellent quality is supported by the early development of the nu = 1 quantum Hall plateau at a magnetic field of 5 T and temperature of 4.2 K. We also present a new and accurate transfer technique of graphene to hexagonal boron nitride crystals. This technique is simple, fast and yields atomically flat graphene on boron nitride which is almost completely free of bubbles or wrinkles. The potential of commercially available boron nitride combined with our transfer technique makes high mobility graphene devices more accessible.Comment: 3 pages, 3 figure
    corecore