33 research outputs found

    Computational Study of Turbulent-Laminar Patterns in Couette Flow

    Full text link
    Turbulent-laminar patterns near transition are simulated in plane Couette flow using an extension of the minimal flow unit methodology. Computational domains are of minimal size in two directions but large in the third. The long direction can be tilted at any prescribed angle to the streamwise direction. Three types of patterned states are found and studied: periodic, localized, and intermittent. These correspond closely to observations in large aspect ratio experiments.Comment: 4 pages, 5 figure

    Transient growth in Taylor-Couette flow

    Get PDF
    Transient growth due to non-normality is investigated for the Taylor-Couette problem with counter-rotating cylinders as a function of aspect ratio eta and Reynolds number Re. For all Re < 500, transient growth is enhanced by curvature, i.e. is greater for eta < 1 than for eta = 1, the plane Couette limit. For fixed Re < 130 it is found that the greatest transient growth is achieved for eta between the Taylor-Couette linear stability boundary, if it exists, and one, while for Re > 130 the greatest transient growth is achieved for eta on the linear stability boundary. Transient growth is shown to be approximately 20% higher near the linear stability boundary at Re = 310, eta = 0.986 than at Re = 310, eta = 1, near the threshold observed for transition in plane Couette flow. The energy in the optimal inputs is primarily meridional; that in the optimal outputs is primarily azimuthal. Pseudospectra are calculated for two contrasting cases. For large curvature, eta = 0.5, the pseudospectra adhere more closely to the spectrum than in a narrow gap case, eta = 0.99

    Fractal Stability Border in Plane Couette Flow

    Full text link
    We study the dynamics of localised perturbations in plane Couette flow with periodic lateral boundary conditions. For small Reynolds number and small amplitude of the initial state the perturbation decays on a viscous time scale tRet \propto Re. For Reynolds number larger than about 200, chaotic transients appear with life times longer than the viscous one. Depending on the type of the perturbation isolated initial conditions with infinite life time appear for Reynolds numbers larger than about 270--320. In this third regime, the life time as a function of Reynolds number and amplitude is fractal. These results suggest that in the transition region the turbulent dynamics is characterised by a chaotic repeller rather than an attractor.Comment: 4 pages, Latex, 4 eps-figures, submitted to Phys. Rev. Le

    Evolution of turbulent spots in a parallel shear flow

    Full text link
    The evolution of turbulent spots in a parallel shear flow is studied by means of full three-dimensional numerical simulations. The flow is bounded by free surfaces and driven by a volume force. Three regions in the spanwise spot cross-section can be identified: a turbulent interior, an interface layer with prominent streamwise streaks and vortices and a laminar exterior region with a large scale flow induced by the presence of the spot. The lift-up of streamwise streaks which is caused by non-normal amplification is clearly detected in the region adjacent to the spot interface. The spot can be characterized by an exponentially decaying front that moves with a speed different from that of the cross-stream outflow or the spanwise phase velocity of the streamwise roll pattern. Growth of the spots seems to be intimately connected to the large scale outside flow, for a turbulent ribbon extending across the box in downstream direction does not show the large scale flow and does not grow. Quantitatively, the large scale flow induces a linear instability in the neighborhood of the spot, but the associated front velocity is too small to explain the spot spreading.Comment: 10 pages, 10 Postscript figure

    Transition from the Couette-Taylor system to the plane Couette system

    Full text link
    We discuss the flow between concentric rotating cylinders in the limit of large radii where the system approaches plane Couette flow. We discuss how in this limit the linear instability that leads to the formation of Taylor vortices is lost and how the character of the transition approaches that of planar shear flows. In particular, a parameter regime is identified where fractal distributions of life times and spatiotemporal intermittency occur. Experiments in this regime should allow to study the characteristics of shear flow turbulence in a closed flow geometry.Comment: 5 pages, 5 figure

    The rise of fully turbulent flow

    Full text link
    Over a century of research into the origin of turbulence in wallbounded shear flows has resulted in a puzzling picture in which turbulence appears in a variety of different states competing with laminar background flow. At slightly higher speeds the situation changes distinctly and the entire flow is turbulent. Neither the origin of the different states encountered during transition, nor their front dynamics, let alone the transformation to full turbulence could be explained to date. Combining experiments, theory and computer simulations here we uncover the bifurcation scenario organising the route to fully turbulent pipe flow and explain the front dynamics of the different states encountered in the process. Key to resolving this problem is the interpretation of the flow as a bistable system with nonlinear propagation (advection) of turbulent fronts. These findings bridge the gap between our understanding of the onset of turbulence and fully turbulent flows.Comment: 31 pages, 9 figure

    Structures in Turbulent Plane Couette Flow Obtained from Correlation Measurements

    No full text

    Wall Pressure Measurements in a Y-Junction at Pulsating Flow using Polymer/Ceramic Pressure Sensitive Paint

    No full text
    Abstract In this experiment ruthenium based polymer/ceramic pressure sensitive paint (PC-PSP) has been used to study the pressure inside a y-junction at pulsating flow conditions. Pressure has been measured using the intensity based method and through phase locked averages. The aim has been to investigate the potential of PC-PSP at mass flows and pulse frequencies typical of those in the exhaust manifold of internal combustion engines
    corecore