10 research outputs found

    Intermediate inflation and the slow-roll approximation

    Full text link
    It is shown that spatially homogeneous solutions of the Einstein equations coupled to a nonlinear scalar field and other matter exhibit accelerated expansion at late times for a wide variety of potentials VV. These potentials are strictly positive but tend to zero at infinity. They satisfy restrictions on V′/VV'/V and V′′/V′V''/V' related to the slow-roll approximation. These results generalize Wald's theorem for spacetimes with positive cosmological constant to those with accelerated expansion driven by potentials belonging to a large class.Comment: 19 pages, results unchanged, additional backgroun

    Accelerated cosmological expansion due to a scalar field whose potential has a positive lower bound

    Full text link
    In many cases a nonlinear scalar field with potential VV can lead to accelerated expansion in cosmological models. This paper contains mathematical results on this subject for homogeneous spacetimes. It is shown that, under the assumption that VV has a strictly positive minimum, Wald's theorem on spacetimes with positive cosmological constant can be generalized to a wide class of potentials. In some cases detailed information on late-time asymptotics is obtained. Results on the behaviour in the past time direction are also presented.Comment: 16 page

    The problem of a self-gravitating scalar field with positive cosmological constant

    Get PDF
    We study the Einstein-scalar field system with positive cosmological constant and spherically symmetric characteristic initial data given on a truncated null cone. We prove well-posedness, global existence and exponential decay in (Bondi) time, for small data. From this, it follows that initial data close enough to de Sitter data evolves to a causally geodesically complete spacetime (with boundary), which approaches a region of de Sitter asymptotically at an exponential rate; this is a non-linear stability result for de Sitter within the class under consideration, as well as a realization of the cosmic no-hair conjecture.We thank Pedro Girao, Marc Mars, Alan Rendall, Jorge Silva and Raul Vera for useful discussions. This work was supported by projects PTDC/MAT/108921/2008 and CERN/FP/116377/2010, and by CMAT, Universidade do Minho, and CAMSDG, Instituto Superior Tecnico, through FCT plurianual funding. AA thanks the Mathematics Department of Instituto Superior Tecnico (Lisbon), where this work was done, and the International Erwin Schrodinger Institute (Vienna), where the workshop "Dynamics of General Relativity: Analytical and Numerical Approaches" took place, for hospitality, and FCT for grant SFRH/BD/48658/2008

    Theorems on existence and global dynamics for the Einstein equations

    Get PDF
    This article is a guide to theorems on existence and global dynamics of solutions of the Einstein equations. It draws attention to open questions in the field. The local-in-time Cauchy problem, which is relatively well understood, is surveyed. Global results for solutions with various types of symmetry are discussed. A selection of results from Newtonian theory and special relativity that offer useful comparisons is presented. Treatments of global results in the case of small data and results on constructing spacetimes with prescribed singularity structure or late-time asymptotics are given. A conjectural picture of the asymptotic behaviour of general cosmological solutions of the Einstein equations is built up. Some miscellaneous topics connected with the main theme are collected in a separate section.Comment: Submitted to Living Reviews in Relativity, major update of Living Rev. Rel. 5 (2002)

    The Einstein-Vlasov System/Kinetic Theory

    Full text link
    The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein--Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on non-relativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein--Vlasov system. Since then many theorems on global properties of solutions to this system have been established.Comment: Published version http://www.livingreviews.org/lrr-2011-
    corecore