28 research outputs found

    Scattering length of Andreev reflection from quantized vortices in 3^3He-BB

    Get PDF
    Andreev reflection of thermal quasiparticles from quantized vortices is an important technique to visualize quantum turbulence in low temperature 3^3He-BB. We revisit a problem of Andreev reflection from the isolated, rectilinear vortex line. For quasiparticle excitations whose impact parameters, defined as distances of the closest approach to the vortex core, do not exceed some arbitrary value, bb, we calculate exactly the reflected fraction of the total flux of excitations incident upon the vortex in the direction orthogonal to the vortex line. We then define and calculate exactly, as a function of bb, the scattering length, that is the scattering cross-section per unit length of the vortex line. We also define and calculate the scattering lengths for the flux of energy carried by thermal excitations, and for the net energy flux resulting from a (small) temperature gradient, and analyze the dependence of these scattering lengths on temperature.Comment: 8 pages, 4 figure

    Visualizing Pure Quantum Turbulence in Superfluid 3^{3}He: Andreev Reflection and its Spectral Properties

    Get PDF
    Superfluid 3^3He-B in the zero-temperature limit offers a unique means of studying quantum turbulence by the Andreev reflection of quasiparticle excitations by the vortex flow fields. We validate the experimental visualization of turbulence in 3^3He-B by showing the relation between the vortex-line density and the Andreev reflectance of the vortex tangle in the first simulations of the Andreev reflectance by a realistic 3D vortex tangle, and comparing the results with the first experimental measurements able to probe quantum turbulence on length scales smaller than the inter-vortex separation.Comment: 5 pages, 4 figures, and Supplemental Material (2 pages, 2 figures

    Cross-sections of Andreev scattering by quantized vortex rings in 3He-B

    Full text link
    We studied numerically the Andreev scattering cross-sections of three-dimensional isolated quantized vortex rings in superfluid 3He-B at ultra-low temperatures. We calculated the dependence of the cross-section on the ring's size and on the angle between the beam of incident thermal quasiparticle excitations and the direction of the ring's motion. We also introduced, and investigated numerically, the cross-section averaged over all possible orientations of the vortex ring; such a cross-section may be particularly relevant for the analysis of experimental data. We also analyzed the role of screening effects for Andreev reflection of quasiparticles by systems of vortex rings. Using the results obtained for isolated rings we found that the screening factor for a system of unlinked rings depends strongly on the average radius of the vortex ring, and that the screening effects increase with decreasing the rings' size.Comment: 11 pages, 8 figures ; submitted to Physical Review

    Ballistic propagation of thermal excitations near a vortex in superfluid He3-B

    Full text link
    Andreev scattering of thermal excitations is a powerful tool for studying quantized vortices and turbulence in superfluid He3-B at very low temperatures. We write Hamilton's equations for a quasiparticle in the presence of a vortex line, determine its trajectory, and find under wich conditions it is Andreev reflected. To make contact with experiments, we generalize our results to the Onsager vortex gas, and find values of the intervortex spacing in agreement with less rigorous estimates

    Interaction of ballistic quasiparticles and vortex configurations in superfluid He3-B

    Get PDF
    The vortex line density of turbulent superfluid He3-B at very low temperature is deduced by detecting the shadow of ballistic quasiparticles which are Andreev reflected by quantized vortices. Until now the measured total shadow has been interpreted as the sum of shadows arising from interactions of a single quasiparticle with a single vortex. By integrating numerically the quasi-classical Hamiltonian equations of motion of ballistic quasiparticles in the presence of nontrivial but relatively simple vortex systems (such as vortex-vortex and vortex-antivortex pairs and small clusters of vortices) we show that partial screening can take place, and the total shadow is not necessarily the sum of the shadows. We have also found that it is possible that, upon impinging on complex vortex configurations, quasiparticles experience multiple reflections, which can be classical, Andreev, or both.Comment: To appear in Phys Rev

    Orbital viscosity in superfluid He-3-B in a magnetic field.

    No full text
    Orbital viscosity is usually associated with the A phase of superfluid He-3 which has a finite orbital angular momentum even in zero magnetic field. The B phase has no orbital angular momentum in zero magnetic field, but both spin and orbital angular momenta are induced by a field. The Leggett equations for spin dynamics assume that the orbital angular momentum can only change on timescales much longer than those involved in spin dynamics. We calculate the orbital viscosity of the B phase in both the hydrodynamic and ballistic limits. At low temperatures the orbital viscosity becomes vanishingly small which gives rise to the possibility of coupled spin-orbit dynamics

    Coherently precessing spin and orbital states in superfluid He-3-B.

    No full text
    The Leggett equations for the spin dynamics of superfluid He-3 give a good description of the whole range of NMR phenomena observed at relatively high temperatures. However these equations assume that the orbital angular momentum of the condensate may only change on timescales much longer than the spin precession period. At the lowest achievable temperatures, the orbital viscosity of the B-phase of superfluid He-3 becomes vanishingly small, giving rise to the possibility of rapid orbital motion. We have reformulated Leggett's equations for the B-phase to allow for fast orbital dynamics in the absence of dissipation. The resulting non-linear equations of motion couple spin and orbital degrees of freedom resulting in qualitatively new phenomena. In particular, they allow for phase-locked precession of the spin and orbital angular momentum around an applied magnetic field. The coupled spin-orbit dynamics may eventually explain the exotic ultra long-lived NMR signals found at the lowest temperatures in He-3-B
    corecore