7 research outputs found

    Computational strategies for speeding-up F.E. simulations of metal forming processes

    No full text
    International audienceAn overview of various numerical methods developed for speeding-up computations is presented in the field of the bulk material forming under solid state, which is characterized by complex and evolving geometries requiring frequent remeshings and numerous time increments. These methods are oriented around the axis that constitutes the meshing problem. The multi-mesh method allows to optimally solve several physics involved on the same domain, according to its finite element discretization with several different meshes, for example in the cogging or cold pilgering processes. For quasi steady-state problems and problems with quite pronounced localization of deformation, such as Friction Stir Welding (FSW) or High Speed Machining, an Arbitrary Lagrangian or Eulerian formulation (ALE) with mesh adaptation shows to be imperative. When the problem is perfectly steady, as for the rolling of long products, the direct search for the stationary state allows huge accelerations. In the general case, where no process specificity can be used to solve the implicit equations, the multigrid method makes it possible to construct a much more efficient iterative solver, which is especially characterized by an almost linear asymptotic cost

    Thermomechanics of the cooling stage in casting processes: Three-dimensional finite element analysis and experimental validation

    No full text
    International audienceA thermomechanical three-dimensional (3-D) finite element analysis of solidification is presented. The heat transfer model is based on a multidomain analysis accounting for noncoincident meshes for the cast part and the different mold components. In each subdomain, a preconditioned conjugate gradient solver is used. The mechanical analysis assumes the mold is rigid. A thermoelastic-viscoplastic rheological model is used to compute the constrained shrinkage of the part, resulting in an effective local air gap width computation. At each time increment, a weak coupling of the heat transfer and mechanical analyses is performed. Comparisons of experimental measurements and model predictions are given in the case of a hollow cylindrical aluminum alloy part, showing a good quantitative agreement. An application to an industrial aluminum casting is presented, illustrating the practical interest of thermomechanical computations in solidification analysis
    corecore