47 research outputs found

    Gauss-Bonnet Chameleon Mechanism of Dark Energy

    Full text link
    As a model of the current accelerated expansion of the universe, we consider a model of the scalar-Einstein-Gauss-Bonnet gravity. This model includes the propagating scalar modes, which might give a large correction to the Newton law. In order to avoid this problem, we propose an extension of the Chameleon mechanism where the scalar mode becomes massive due to the coupling with the Gauss-Bonnet term. Since the Gauss-Bonnet invariant does not vanish near the earth or in the Solar System, even in the vacuum, the scalar mode is massive even in the vacuum and the correction to the Newton law could be small. We also discuss about the possibility that the model could describe simultaneously the inflation in the early universe, in addition to the current accelerated expansion.Comment: LaTeX 11 pages, no figur

    Quadratic Curvature Gravity with Second Order Trace and Massive Gravity Models in Three Dimensions

    Full text link
    The quadratic curvature lagrangians having metric field equations with second order trace are constructed relative to an orthonormal coframe. In n>4n>4 dimensions, pure quadratic curvature lagrangian having second order trace constructed contains three free parameters in the most general case. The fourth order field equations of some of these models, in arbitrary dimensions, are cast in a particular form using the Schouten tensor. As a consequence, the field equations for the New massive gravity theory are related to those of the Topologically massive gravity. In particular, the conditions under which the latter is "square root" of the former are presented.Comment: 24 pages, to appear in GR

    Brane World Cosmological Perturbations

    Full text link
    We consider a brane world and its gravitational linear perturbations. We present a general solution of the perturbations in the bulk and find the complete perturbed junction conditions for generic brane dynamics. We also prove that (spin 2) gravitational waves in the great majority of cases can only arise in connection with a non-vanishing anisotropic stress. This has far reaching consequences for inflation in the brane world. Moreover, contrary to the case of the radion, perturbations are stable.Comment: 16 pages, one figur

    Aspects of Scalar Field Dynamics in Gauss-Bonnet Brane Worlds

    Full text link
    The Einstein-Gauss-Bonnet equations projected from the bulk to brane lead to a complicated Friedmann equation which simplifies to H2ρqH^2 \sim \rho^q in the asymptotic regimes. The Randall-Sundrum (RS) scenario corresponds to q=2q=2 whereas q=2/3q=2/3 & q=1q=1 give rise to high energy Gauss-Bonnet (GB) regime and the standard GR respectively. Amazingly, while evolving from RS regime to high energy GB limit, one passes through a GR like region which has important implications for brane world inflation. For tachyon GB inflation with potentials V(ϕ)ϕpV(\phi) \sim \phi^p investigated in this paper, the scalar to tensor ratio of perturbations RR is maximum around the RS region and is generally suppressed in the high energy regime for the positive values of pp. The ratio is very low for p>0p>0 at all energy scales relative to GB inflation with ordinary scalar field. The models based upon tachyon inflation with polynomial type of potentials with generic positive values of pp turn out to be in the 1σ1 \sigma observational contour bound at all energy scales varying from GR to high energy GB limit. The spectral index nSn_S improves for the lower values of pp and approaches its scale invariant limit for p=2p=-2 in the high energy GB regime. The ratio RR also remains small for large negative values of pp, however, difference arises for models close to scale invariance limit. In this case, the tensor to scale ratio is large in the GB regime whereas it is suppressed in the intermediate region between RS and GB. Within the frame work of patch cosmologies governed by H2ρqH^2 \sim \rho^q, the behavior of ordinary scalar field near cosmological singularity and the nature of scaling solutions are distinguished for the values of q1q 1.Comment: 15 pages, 10 eps figures; appendix on various scales in GB brane world included and references updated; final version to appear in PR

    The unification of inflation and late-time acceleration in the frame of kk-essence

    Full text link
    By using the formulation of the reconstruction, we explicitly construct models of kk-essence, which unify the inflation in the early universe and the late accelerating expansion of the present universe by a single scalar field. Due to the higher derivative terms, the solution describing the unification can be stable in the space of solutions, which makes the restriction for the initial condition relaxed. The higher derivative terms also eliminate tachyon. Therefore we can construct a model describing the time development, which cannot be realized by a usual inflaton or quintessence models of the canonical scalar field due to the instability or the existence of tachyon. We also propose a mechanism of the reheating by the quantum effects coming from the variation of the energy density of the scalar field.Comment: LaTeX, 13 pages, 10 figure

    Stable phantom-divide crossing in two scalar models with matter

    Full text link
    We construct cosmological models with two scalar fields, which has the structure as in the ghost condensation model or k-essence model. The models can describe the stable phantom crossing, which should be contrasted with one scalar tensor models, where the infinite instability occurs at the crossing the phantom divide. We give a general formulation of the reconstruction in terms of the e-foldings N by including the matter although in the previous two scalar models, which are extensions of the scalar tensor model, it was difficult to give a formulation of the reconstruction when we include matters. In the formulation of the reconstruction, we start with a model with some arbitrary functions, and find the functions which generates the history in the expansion of the universe. We also give general arguments for the stabilities of the models and the reconstructed solution. The viability of a model is also investigated by comparing the observational data.Comment: 12 pages, 1 figur

    (Non)-singular brane-world cosmology induced by quantum effects in d5 dilatonic gravity

    Full text link
    5d dilatonic gravity (bosonic sector of gauged supergravity) with non-trivial bulk potential and with surface terms (boundary cosmological constant and trace anomaly induced effective action for brane quantum matter) is considered. For constant bulk potential and maximally SUSY Yang-Mills theory (CFT living on the brane) the inflationary brane-world is constructed. The bulk is singular asymptotically AdS space with non-constant dilaton and dilatonic de Sitter or hyperbolic brane is induced by quantum matter effects. At the same time, dilaton on the brane is determined dynamically. This all is natural realization of warped compactification in AdS/CFT correspondence. For fine-tuned toy example of non-constant bulk potential we found the non-singular dilatonic brane-world where bulk again represents asymptotically AdS space and de Sitter brane (inflationary phase of observable Universe) is induced exclusively by quantum effects. The radius of the brane and dilaton are determined dynamically. The analytically solvable example of exponential bulk potential leading to singular asymptotically AdS dilatonic bulk space with de Sitter (or hyperbolic) brane is also presented.In all cases under discussion the gravity on the brane is trapped via Randall-Sundrum scenario. It is shown that qualitatively the same types of brane-worlds occur when quantum brane matter is described by NN dilaton coupled spinors.Comment: LaTeX file 28 pages and two eps files, few misprints are correcte

    Future of the universe in modified gravitational theories: Approaching to the finite-time future singularity

    Full text link
    We investigate the future evolution of the dark energy universe in modified gravities including F(R)F(R) gravity, string-inspired scalar-Gauss-Bonnet and modified Gauss-Bonnet ones, and ideal fluid with the inhomogeneous equation of state (EoS). Modified Friedmann-Robertson-Walker (FRW) dynamics for all these theories may be presented in universal form by using the effective ideal fluid with an inhomogeneous EoS without specifying its explicit form. We construct several examples of the modified gravity which produces accelerating cosmologies ending at the finite-time future singularity of all four known types by applying the reconstruction program. Some scenarios to resolve the finite-time future singularity are presented. Among these scenarios, the most natural one is related with additional modification of the gravitational action in the early universe. In addition, late-time cosmology in the non-minimal Maxwell-Einstein theory is considered. We investigate the forms of the non-minimal gravitational coupling which generates the finite-time future singularities and the general conditions for this coupling in order that the finite-time future singularities cannot emerge. Furthermore, it is shown that the non-minimal gravitational coupling can remove the finite-time future singularities or make the singularity stronger (or weaker) in modified gravity.Comment: 25 pages, no figure, title changed, accepted in JCA

    Comments on orientifold projection in the conifold and SO x USp duality cascade

    Get PDF
    We study the O3-plane in the conifold. On the D3-brane world-volume we obtain SO x USp gauge theory that exhibits a duality cascade phenomenon. The orientifold projection is determined on the type IIB string side, and corresponds to that of O4-plane on the dual type IIA side. We show that SUGRA solutions of Klebanov-Tseytlin and Klebanov-Strassler survive under the projection. We also investigate the orientifold projection in the generalized conifolds, and verify desired features of the O4-projection in the type IIA picture.Comment: 1+27 pages, 9 figures, references added; version to appear in Phys. Rev.

    Dilatonic quantum multi-brane-worlds

    Get PDF
    d5 dilatonic gravity action with surface counterterms motivated by AdS/CFT correspondence and with contributions of brane quantum CFTs is considered around AdS-like bulk. The effective equations of motion are constructed. They admit two (outer and inner) or multi-brane solutions where brane CFTs may be different. The role of quantum brane CFT is in inducing of complicated brane dilatonic gravity. For exponential bulk potentials the number of AdS-like bulk spaces is found in analytical form.The correspondent flat or curved (de Sitter or hyperbolic) dilatonic two branes are created, as a rule, thanks to quantum effects. The observable early Universe may correspond to inflationary brane. The found dilatonic quantum two brane-worlds usually contain the naked singularity but in couple explicit examples the curvature is finite and horizon (corresponding to wormhole-like space) appears.Comment: LaTeX file, 25 pages, discussion is enlarge
    corecore