60 research outputs found

    Orbital Magnetism of 2D Chaotic Lattices

    Full text link
    We study the orbital magnetism of 2D lattices with chaotic motion of electrons withing a primitive cell. Using the temperature diagrammatic technique we evaluate the averaged value and rms fluctuation of magnetic response in the diffusive regime withing the model of non-interacting electrons. The fluctuations of magnetic susceptibility turn out to be large and at low temperature can be of the order of χL(kFl)3/2\chi_{L} (k_{F}l)^{3/2}, where kFk_{F} is the Fermi wavevector, ll is the mean free path, and χL\chi_{L} is the Landau susceptibility. In the certain region of magnetic fields the paramagnetic contribution to the averaged response is field independent and larger than the absolute value of Landau response.Comment: 6 pages, Latex file, figures available upon reques

    Orbital Magnetism and Current Distribution of Two-Dimensional Electrons under Confining Potential

    Full text link
    The spatial distribution of electric current under magnetic field and the resultant orbital magnetism have been studied for two-dimensional electrons under a harmonic confining potential V(\vecvar{r})=m \omega_0^2 r^2/2 in various regimes of temperature and magnetic field, and the microscopic conditions for the validity of Landau diamagnetism are clarified. Under a weak magnetic field (\omega_c\lsim\omega_0, \omega_c being a cyclotron frequency) and at low temperature (T\lsim\hbar\omega_0), where the orbital magnetic moment fluctuates as a function of the field, the currents are irregularly distributed paramagnetically or diamagnetically inside the bulk region. As the temperature is raised under such a weak field, however, the currents in the bulk region are immediately reduced and finally there only remains the diamagnetic current flowing along the edge. At the same time, the usual Landau diamagnetism results for the total magnetic moment. The origin of this dramatic temperature dependence is seen to be in the multiple reflection of electron waves by the boundary confining potential, which becomes important once the coherence length of electrons gets longer than the system length. Under a stronger field (\omega_c\gsim\omega_0), on the other hand, the currents in the bulk region cause de Haas-van Alphen effect at low temperature as T\lsim\hbar\omega_c. As the temperature gets higher (T\gsim\hbar\omega_c) under such a strong field, the bulk currents are reduced and the Landau diamagnetism by the edge current is recovered.Comment: 15 pages, 11 figure

    "Optical conductance fluctuations: diagrammatic analysis in Landauer approach and non-universal effects"

    Get PDF
    The optical conductance of a multiple scattering medium is the total transmitted light of a diffuse incoming beam. This quantity, very analogous to the electronic conductance, exhibits universal conductance fluctuations. We perform a detailed diagrammatic analysis of these fluctuations. With a Kadanoff-Baym technique all the leading diagrams are systematically generated. A cancellation of the short distance divergencies occurs, that yields a well behaved theory. The analytical form of the fluctuations is calculated and applied to optical systems. Absorption and internal reflections reduce the fluctuations significantly.Comment: 25 pages Revtex 3.0, 18 seperate postscript figure

    Effect of dephasing on mesoscopic conductance fluctuations in quantum dots with single channel leads

    Full text link
    We consider the distribution of conductance fluctuations in disordered quantum dots with single channel leads. Using a perturbative diagrammatic approach, valid for continuous level spectra, we describe dephasing due to processes within the dot by considering two different contributions to the level broadening, thus satisfying particle number conservation. Instead of a completely non-Gaussian distribution, which occurs for zero dephasing, we find for strong dephasing that the distribution is mainly Gaussian with non-universal variance and non-Gaussian tails.Comment: 11 pages in REVTeX two-column format; 6 eps figures included; submitted to Phys. Rev.

    Magnetolocalization in disordered quantum wires

    Full text link
    The magnetic field dependent localization in a disordered quantum wire is considered nonperturbatively. An increase of an averaged localization length with the magnetic field is found, saturating at twice its value without magnetic field. The crossover behavior is shown to be governed both in the weak and strong localization regime by the magnetic diffusion length L_B. This function is derived analytically in closed form as a function of the ratio of the mean free path l, the wire thickness W, and the magnetic length l_B for a two-dimensional wire with specular boundary conditions, as well as for a parabolic wire. The applicability of the analytical formulas to resistance measurements in the strong localization regime is discussed. A comparison with recent experimental results on magnetolocalization is included.Comment: 22 pages, RevTe

    Strong localization of electrons in quasi-one-dimensional conductors

    Full text link
    We report on the experimental study of electron transport in sub-micron-wide ''wires'' fabricated from Si δ\delta -doped GaAs. These quasi-one-dimensional (Q1D) conductors demonstrate the crossover from weak to strong localization with decreasing the temperature. On the insulating side of the crossover, the resistance has been measured as a function of temperature, magnetic field, and applied voltage for different values of the electron concentration, which was varied by applying the gate voltage. The activation temperature dependence of the resistance has been observed with the activation energy close to the mean energy spacing of electron states within the localization domain. The study of non-linearity of the current-voltage characteristics provides information on the distance between the critical hops which govern the resistance of Q1D conductors in the strong localization (SL) regime. We observe the exponentially strong negative magnetoresistance; this orbital magnetoresistance is due to the universal magnetic-field dependence of the localization length in Q1D conductors. The method of measuring of the single-particle density of states (DoS) in the SL regime has been suggested. Our data indicate that there is a minimum of DoS at the Fermi level due to the long-range Coulomb interaction.Comment: 12 pages, 11 figures; the final version to appear in Phys. Rev.

    Politicians lie, so do I

    Get PDF
    This research analyzed whether political leaders make people lie via priming experiments. Priming is a non-conscious and implicit memory effect in which exposure to one stimulus affects the response to another stimulus. Following priming theories, we proposed an innovative concept that people who perceive leaders to be dishonest (such as liar) are likely to lie themselves. We designed three experiments to analyze and critically discussed the potential influence of prime effect on lying behavior, through the prime effect of French political leaders (inc. general politicians, presidents and parties). Experiment 1 discovered that participants with non-politician-prime were less likely to lie (compared to politician-prime). Experiment 2A discovered that, compared to Hollande-prime, Sarkozy-prime led to lying behavior both in gravity (i.e. bigger lies) and frequency (i.e. lying more frequently). Experiment 2B discovered that Republicans-prime yielded an impact on more lying behavior, and Sarkozy-prime made such impact even stronger. Overall, the research findings suggest that lying can be triggered by external influencers such as leaders, presidents and politicians in the organizations. Our findings have provided valuable insights to organizational leaders and managers in their personnel management practice, especially in the intervention of lying behavior. Our findings also have offered new insights to explain non-conscious lying behavior

    Telling lies:The irrepressible truth?

    Get PDF
    Telling a lie takes longer than telling the truth but precisely why remains uncertain. We investigated two processes suggested to increase response times, namely the decision to lie and the construction of a lie response. In Experiments 1 and 2, participants were directed or chose whether to lie or tell the truth. A colored square was presented and participants had to name either the true color of the square or lie about it by claiming it was a different color. In both experiments we found that there was a greater difference between lying and telling the truth when participants were directed to lie compared to when they chose to lie. In Experiments 3 and 4, we compared response times when participants had only one possible lie option to a choice of two or three possible options. There was a greater lying latency effect when questions involved more than one possible lie response. Experiment 5 examined response choice mechanisms through the manipulation of lie plausibility. Overall, results demonstrate several distinct mechanisms that contribute to additional processing requirements when individuals tell a lie
    • …
    corecore