75 research outputs found

    Lrp5 Is Not Required for the Proliferative Response of Osteoblasts to Strain but Regulates Proliferation and Apoptosis in a Cell Autonomous Manner

    Get PDF
    Although Lrp5 is known to be an important contributor to the mechanisms regulating bone mass, its precise role remains unclear. The aim of this study was to establish whether mutations in Lrp5 are associated with differences in the growth and/or apoptosis of osteoblast-like cells and their proliferative response to mechanical strain in vitro. Primary osteoblast-like cells were derived from cortical bone of adult mice lacking functional Lrp5 (Lrp5−/−), those heterozygous for the human G171V High Bone Mass (HBM) mutation (LRP5G171V) and their WT littermates (WTLrp5, WTHBM). Osteoblast proliferation over time was significantly higher in cultures of cells from LRP5G171V mice compared to their WTHBM littermates, and lower in Lrp5−/− cells. Cells from female LRP5G171V mice grew more rapidly than those from males, whereas cells from female Lrp5−/− mice grew more slowly than those from males. Apoptosis induced by serum withdrawal was significantly higher in cultures from Lrp5−/− mice than in those from WTHBM or LRP5G171V mice. Exposure to a single short period of dynamic mechanical strain was associated with a significant increase in cell number but this response was unaffected by genotype which also did not change the ‘threshold’ at which cells responded to strain. In conclusion, the data presented here suggest that Lrp5 loss and gain of function mutations result in cell-autonomous alterations in osteoblast proliferation and apoptosis but do not alter the proliferative response of osteoblasts to mechanical strain in vitro

    Syndecan-1 and FGF-2, but Not FGF Receptor-1, Share a Common Transport Route and Co-Localize with Heparanase in the Nuclei of Mesenchymal Tumor Cells

    Get PDF
    Syndecan-1 forms complexes with growth factors and their cognate receptors in the cell membrane. We have previously reported a tubulin-mediated translocation of syndecan-1 to the nucleus. The transport route and functional significance of nuclear syndecan-1 is still incompletely understood. Here we investigate the sub-cellular distribution of syndecan-1, FGF-2, FGFR-1 and heparanase in malignant mesenchymal tumor cells, and explore the possibility of their coordinated translocation to the nucleus. To elucidate a structural requirement for this nuclear transport, we have transfected cells with a syndecan-1/EGFP construct or with a short truncated version containing only the tubulin binding RMKKK sequence. The sub-cellular distribution of the EGFP fusion proteins was monitored by fluorescence microscopy. Our data indicate that syndecan-1, FGF-2 and heparanase co-localize in the nucleus, whereas FGFR-1 is enriched mainly in the perinuclear area. Overexpression of syndecan-1 results in increased nuclear accumulation of FGF-2, demonstrating the functional importance of syndecan-1 for this nuclear transport. Interestingly, exogenously added FGF-2 does not follow the route taken by endogenous FGF-2. Furthermore, we prove that the RMKKK sequence of syndecan-1 is necessary and sufficient for nuclear translocation, acting as a nuclear localization signal, and the Arginine residue is vital for this localization. We conclude that syndecan-1 and FGF-2, but not FGFR-1 share a common transport route and co-localize with heparanase in the nucleus, and this transport is mediated by the RMKKK motif in syndecan-1. Our study opens a new perspective in the proteoglycan field and provides more evidence of nuclear interactions of syndecan-1

    Review of Matrix Metalloproteinases’ Effect on the Hybrid Dentin Bond Layer Stability and Chlorhexidine Clinical Use to Prevent Bond Failure

    Get PDF
    This review describes the relationship between dentin collagen hybrid bond layer degradation and the Matrix Metalloproteinases (MMPs) after their release by acid etch and rinse adhesives and self etching bonding adhesives that can reduce the bond stability over time. MMP-2, MMP-8 and MMP-9 are indicated as the active proteases that breakdown the collagen fibrils in the hybrid bond layer. Phosphoric acid in the acid etch and rinse bonding process and acid primers in the self etch process are implicated in the release of these proteases and their activation by several non-collagen proteins also released from dentin by the etching. MMPs are released in saliva by salivary glands, by cells in the gingival crevices to crevicular fluid and by pulpal odontoblasts cells to the dentinal fluids. These sources may affect the hybrid layer also. Evidence of the bond strength deterioration over time and the ability of Chlorhexidine to prevent bond deterioration by inhibiting MMP action are discussed. Dentin Bonding procedure utilizing Chlorhexidine for different application times and concentrations are being developed. The application of 2% Chlorhexidine to the phosphoric acid etch surface after rinsing off the acid is the only procedure that has been clinically tested for a longer period of time and shown to prevent bond strength degradation so far. The adoption of this procedure is recommended as means of improving bond stability at this time
    corecore