277 research outputs found

    Fast and Accurate Coarsening Simulation with an Unconditionally Stable Time Step

    Full text link
    We present Cahn-Hilliard and Allen-Cahn numerical integration algorithms that are unconditionally stable and so provide significantly faster accuracy-controlled simulation. Our stability analysis is based on Eyre's theorem and unconditional von Neumann stability analysis, both of which we present. Numerical tests confirm the accuracy of the von Neumann approach, which is straightforward and should be widely applicable in phase-field modeling. We show that accuracy can be controlled with an unbounded time step Delta-t that grows with time t as Delta-t ~ t^alpha. We develop a classification scheme for the step exponent alpha and demonstrate that a class of simple linear algorithms gives alpha=1/3. For this class the speed up relative to a fixed time step grows with the linear size of the system as N/log N, and we estimate conservatively that an 8192^2 lattice can be integrated 300 times faster than with the Euler method.Comment: 14 pages, 6 figure

    Dynamical Scaling: the Two-Dimensional XY Model Following a Quench

    Full text link
    To sensitively test scaling in the 2D XY model quenched from high-temperatures into the ordered phase, we study the difference between measured correlations and the (scaling) results of a Gaussian-closure approximation. We also directly compare various length-scales. All of our results are consistent with dynamical scaling and an asymptotic growth law L(t/ln[t/t0])1/2L \sim (t/\ln[t/t_0])^{1/2}, though with a time-scale t0t_0 that depends on the length-scale in question. We then reconstruct correlations from the minimal-energy configuration consistent with the vortex positions, and find them significantly different from the ``natural'' correlations --- though both scale with LL. This indicates that both topological (vortex) and non-topological (``spin-wave'') contributions to correlations are relevant arbitrarily late after the quench. We also present a consistent definition of dynamical scaling applicable more generally, and emphasize how to generalize our approach to other quenched systems where dynamical scaling is in question. Our approach directly applies to planar liquid-crystal systems.Comment: 10 pages, 10 figure

    Phase Ordering of 2D XY Systems Below T_{KT}

    Full text link
    We consider quenches in non-conserved two-dimensional XY systems between any two temperatures below the Kosterlitz-Thouless transition. The evolving systems are defect free at coarse-grained scales, and can be exactly treated. Correlations scale with a characteristic length L(t)t1/2L(t) \propto t^{1/2} at late times. The autocorrelation decay exponent, λˉ=(ηi+ηf)/2\bar{\lambda} = (\eta_i+\eta_f)/2, depends on both the initial and the final state of the quench through the respective decay exponents of equilibrium correlations, CEQ(r)rηC_{EQ}(r) \sim r^{-\eta}. We also discuss time-dependent quenches.Comment: LATeX 11 pages (REVTeX macros), no figure

    Anisotropic Coarsening: Grain Shapes and Nonuniversal Persistence

    Full text link
    We solve a coarsening system with small but arbitrary anisotropic surface tension and interface mobility. The resulting size-dependent growth shapes are significantly different from equilibrium microcrystallites, and have a distribution of grain sizes different from isotropic theories. As an application of our results, we show that the persistence decay exponent depends on anisotropy and hence is nonuniversal.Comment: 4 pages (revtex), 2 eps figure

    Perceived stigma among patients receiving antiretroviral treatment: A prospective randomised trial comparing an m-DOT strategy with standardof- care in Kenya

    Get PDF
    HIV and AIDS remain highly stigmatised. Modified directly observed therapy (m-DOT) supports antiretroviral treatment (ART) adherence but little is known about its association with perceived stigma in resource-constrained settings. In 2003, 234 HIV-infected adults enrolled in a two-arm randomised trial comparing a health centre-based m-DOT strategy with standard self-administration of ART. Data on perceived stigma were collected using Berger’s HIV stigma scale prior to starting ART and after 12 months. Thiswas a secondary analysis to examine whether perceived stigma was related to treatment delivery. Perceived stigma scores declined after 12 months of treatment from a mean of 44.9 (sd=7.6) to a mean of 41.4 (sd=7.7), (t=6.14,

    Unraveling critical dynamics: The formation and evolution of topological textures

    Get PDF
    We study the formation of topological textures in a nonequilibrium phase transition of an overdamped classical O(3) model in 2+1 dimensions. The phase transition is triggered through an external, time-dependent effective mass, parameterized by quench timescale \tau. When measured near the end of the transition the texture separation and the texture width scale respectively as \tau^(0.39 \pm 0.02) and \tau^(0.46 \pm 0.04), significantly larger than \tau^(0.25) predicted from the Kibble-Zurek mechanism. We show that Kibble-Zurek scaling is recovered at very early times but that by the end of the transition the power-laws result instead from a competition between the length scale determined at freeze-out and the ordering dynamics of a textured system. In the context of phase ordering these results suggest that the multiple length scales characteristic of the late-time ordering of a textured system derive from the critical dynamics of a single nonequilibrium correlation length. In the context of defect formation these results imply that significant evolution of the defect network can occur before the end of the phase transition. Therefore a quantitative understanding of the defect network at the end of the phase transition generally requires an understanding of both critical dynamics and the interactions among topological defects.Comment: 12 pages, revtex, 9 figures in eps forma

    The Energy-Scaling Approach to Phase-Ordering Growth Laws

    Full text link
    We present a simple, unified approach to determining the growth law for the characteristic length scale, L(t)L(t), in the phase ordering kinetics of a system quenched from a disordered phase to within an ordered phase. This approach, based on a scaling assumption for pair correlations, determines L(t)L(t) self-consistently for purely dissipative dynamics by computing the time-dependence of the energy in two ways. We derive growth laws for conserved and non-conserved O(n)O(n) models, including two-dimensional XY models and systems with textures. We demonstrate that the growth laws for other systems, such as liquid-crystals and Potts models, are determined by the type of topological defect in the order parameter field that dominates the energy. We also obtain generalized Porod laws for systems with topological textures.Comment: LATeX 18 pages (REVTeX macros), one postscript figure appended, REVISED --- rearranged and clarified, new paragraph on naive dimensional analysis at end of section I

    Corrections to Scaling in the Phase-Ordering Dynamics of a Vector Order Parameter

    Full text link
    Corrections to scaling, associated with deviations of the order parameter from the scaling morphology in the initial state, are studied for systems with O(n) symmetry at zero temperature in phase-ordering kinetics. Including corrections to scaling, the equal-time pair correlation function has the form C(r,t) = f_0(r/L) + L^{-omega} f_1(r/L) + ..., where L is the coarsening length scale. The correction-to-scaling exponent, omega, and the correction-to-scaling function, f_1(x), are calculated for both nonconserved and conserved order parameter systems using the approximate Gaussian closure theory of Mazenko. In general, omega is a non-trivial exponent which depends on both the dimensionality, d, of the system and the number of components, n, of the order parameter. Corrections to scaling are also calculated for the nonconserved 1-d XY model, where an exact solution is possible.Comment: REVTeX, 20 pages, 2 figure

    Anisotropic dynamical scaling in a spin model with competing interactions

    Full text link
    Results are presented for the kinetics of domain growth of a two-dimensional Ising spin model with competing interactions quenched from a disordered to a striped phase. The domain growth exponent are β=1/2\beta=1/2 and β=1/3\beta=1/3 for single-spin-flip and spin-exchange dynamics, as found in previous simulations. However the correlation functions measured in the direction parallel and transversal to the stripes are different as suggested by the existence of different interface energies between the ground states of the model. In the case of single-spin-flip dynamics an anisotropic version of the Ohta-Jasnow-Kawasaki theory for the pair scaling function can be used to fit our data.Comment: 4 pages, REVTeX fil

    Properties of a classical spin liquid: the Heisenberg pyrochlore antiferromagnet

    Full text link
    We study the low-temperature behaviour of the classical Heisenberg antiferromagnet with nearest neighbour interactions on the pyrochlore lattice. Because of geometrical frustration, the ground state of this model has an extensive number of degrees of freedom. We show, by analysing the effects of small fluctuations around the ground-state manifold, and from the results of Monte Carlo and molecular dynamics simulations, that the system is disordered at all temperatures, T, and has a finite relaxation time, which varies as 1/T for small T.Comment: 4 pages revtex; 3 figures automatically include
    corecore