235 research outputs found
The pulsations and the dynamical stability of gaseous masses in uniform rotation
A variational principle, applicable to axisymmetric oscillations of uniformly rotating axisymmetric configurations, is established On the assumption that the Lagrangian displacement (describing the oscillation) at any point is normal to the level surface (of constant total potential) through that point, it is shown how the variational expression, for the frequencies of oscillation, can be reduced to simple quadratures. The reduction is explicitly carried out for certain stratifications of special interest. Some new results on the oscillations of slowly rotating configurations are included; and a number of related observations on their stability are also made
Parabolic resonances and instabilities in near-integrable two degrees of freedom Hamiltonian flows
When an integrable two-degrees-of-freedom Hamiltonian system possessing a
circle of parabolic fixed points is perturbed, a parabolic resonance occurs. It
is proved that its occurrence is generic for one parameter families
(co-dimension one phenomenon) of near-integrable, t.d.o. systems. Numerical
experiments indicate that the motion near a parabolic resonance exhibits new
type of chaotic behavior which includes instabilities in some directions and
long trapping times in others. Moreover, in a degenerate case, near a {\it flat
parabolic resonance}, large scale instabilities appear. A model arising from an
atmospherical study is shown to exhibit flat parabolic resonance. This supplies
a simple mechanism for the transport of particles with {\it small} (i.e.
atmospherically relevant) initial velocities from the vicinity of the equator
to high latitudes. A modification of the model which allows the development of
atmospherical jets unfolds the degeneracy, yet traces of the flat instabilities
are clearly observed
Mode Switching Time Scales in the Classical Variable Stars
Near the edges of the instability strip the rate of stellar evolution is
larger than the growth-rate of the pulsation amplitude, and the same holds
whenever the star is engaged in pulsational mode switching. Stellar evolution
therefore controls both the onset of pulsation at the edges of the instability
strip and of mode switching inside it. Two types of switchings (bifurcations)
occur. In a soft bifurcation the switching time scale is the inverse harmonic
mean of the pulsational modal growth-rate and of the stellar evolution rate. In
a hard bifurcation the switching times can be substantially longer than the
thermal time scale which is typically of the order of a hundred periods for
Cepheids and RR Lyrae. We discuss some of the observational consequences, in
particular the paucity of low amplitude pulsators at the edges of the
instability strip.Comment: 5 pages, 3 figures, ApJ (in press
Quasi-Homogeneous Thermodynamics and Black Holes
We propose a generalized thermodynamics in which quasi-homogeneity of the
thermodynamic potentials plays a fundamental role. This thermodynamic formalism
arises from a generalization of the approach presented in paper [1], and it is
based on the requirement that quasi-homogeneity is a non-trivial symmetry for
the Pfaffian form . It is shown that quasi-homogeneous
thermodynamics fits the thermodynamic features of at least some
self-gravitating systems. We analyze how quasi-homogeneous thermodynamics is
suggested by black hole thermodynamics. Then, some existing results involving
self-gravitating systems are also shortly discussed in the light of this
thermodynamic framework. The consequences of the lack of extensivity are also
recalled. We show that generalized Gibbs-Duhem equations arise as a consequence
of quasi-homogeneity of the thermodynamic potentials. An heuristic link between
this generalized thermodynamic formalism and the thermodynamic limit is also
discussed.Comment: 39 pages, uses RevteX. Published version (minor changes w.r.t. the
original one
Disk Planet Interactions and Early Evolution in Young Planetary Systems
We study and review disk protoplanet interactions using local shearing box
simulations. These suffer the disadvantage of having potential artefacts
arising from periodic boundary conditions but the advantage, when compared to
global simulations, of being able to capture much of the dynamics close to the
protoplanet at high resolution for low computational cost. Cases with and
without self sustained MHD turbulence are considered. The conditions for gap
formation and the transition from type I migration are investigated and found
to depend on whether the single parameter M_p R^3/(M_* H^3), with M_p, M_*, R
and H being the protoplanet mass, the central mass, the orbital radius and the
disk semi-thickness respectively exceeds a number of order unity. We also
investigate the coorbital torques experienced by a moving protoplanet in an
inviscid disk. This is done by demonstrating the equivalence of the problem for
a moving protoplanet to one where the protoplanet is in a fixed orbit which the
disk material flows through radially as a result of the action of an
appropriate external torque. For sustainable coorbital torques to be realized a
quasi steady state must be realized in which the planet migrates through the
disk without accreting significant mass. In that case although there is
sensitivity to computational parameters, in agreement with earlier work by
Masset & Papaloizou (2003) based on global simulations, the coorbital torques
are proportional to the migration speed and result in a positive feedback on
the migration, enhancing it and potentially leading to a runaway. This could
lead to a fast migration for protoplanets in the Saturn mass range in massive
disks and may be relevant to the mass period correlation for extrasolar planets
which gives a preponderance of sub Jovian masses at short orbital period.Comment: To appear in Celestial Mechanics and Dynamical Astronomy (with higher
resolution figures
Challenges of maintaining research protocol fidelity in a clinical care setting: A qualitative study of the experiences and views of patients and staff participating in a randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>Trial research has predominantly focused on patient and staff understandings of trial concepts and/or motivations for taking part, rather than why treatment recommendations may or may not be followed during trial delivery. This study sought to understand why there was limited attainment of the glycaemic target (HbA<sub>1c </sub>≤6.5%) among patients who participated in the Treating to Target in Type 2 Diabetes Trial (4-T). The objective was to inform interpretation of trial outcomes and provide recommendations for future trial delivery.</p> <p>Methods</p> <p>In-depth interviews were conducted with 45 patients and 21 health professionals recruited from 11 of 58 trial centres in the UK. Patients were broadly representative of those in the main trial in terms of treatment allocation, demographics and glycaemic control. Both physicians and research nurses were interviewed.</p> <p>Results</p> <p>Most patients were committed to taking insulin as recommended by 4-T staff. To avoid hypoglycaemia, patients occasionally altered or skipped insulin doses, normally in consultation with staff. Patients were usually unaware of the trial's glycaemic target. Positive staff feedback could lead patients to believe they had been 'successful' trial participants even when their HbA<sub>1c </sub>exceeded 6.5%. While some staff felt that the 4-T automated insulin dose adjustment algorithm had increased their confidence to prescribe larger insulin doses than in routine clinical practice, all described situations where they had not followed its recommendations. Staff regarded the application of a 'one size fits all' glycaemic target during the trial as contradicting routine clinical practice where they would tailor treatments to individuals. Staff also expressed concerns that 'tight' glycaemic control might impose an unacceptably high risk of hypoglycaemia, thus compromising trust and safety, especially amongst older patients. To address these concerns, staff tended to adapt the trial protocol to align it with their clinical practices and experiences.</p> <p>Conclusions</p> <p>To understand trial findings, foster attainment of endpoints, and promote protocol fidelity, it may be necessary to look beyond individual patient characteristics and experiences. Specifically, the context of trial delivery, the impact of staff involvement, and the difficulties staff may encounter in balancing competing 'clinical' and 'research' roles and responsibilities may need to be considered and addressed.</p
Oxr1 Is Essential for Protection against Oxidative Stress-Induced Neurodegeneration
Oxidative stress is a common etiological feature of neurological disorders, although the pathways that govern defence against reactive oxygen species (ROS) in neurodegeneration remain unclear. We have identified the role of oxidation resistance 1 (Oxr1) as a vital protein that controls the sensitivity of neuronal cells to oxidative stress; mice lacking Oxr1 display cerebellar neurodegeneration, and neurons are less susceptible to exogenous stress when the gene is over-expressed. A conserved short isoform of Oxr1 is also sufficient to confer this neuroprotective property both in vitro and in vivo. In addition, biochemical assays indicate that Oxr1 itself is susceptible to cysteine-mediated oxidation. Finally we show up-regulation of Oxr1 in both human and pre-symptomatic mouse models of amyotrophic lateral sclerosis, indicating that Oxr1 is potentially a novel neuroprotective factor in neurodegenerative disease
A Computational Approach to Finding Novel Targets for Existing Drugs
Repositioning existing drugs for new therapeutic uses is an efficient approach to drug discovery. We have developed a computational drug repositioning pipeline to perform large-scale molecular docking of small molecule drugs against protein drug targets, in order to map the drug-target interaction space and find novel interactions. Our method emphasizes removing false positive interaction predictions using criteria from known interaction docking, consensus scoring, and specificity. In all, our database contains 252 human protein drug targets that we classify as reliable-for-docking as well as 4621 approved and experimental small molecule drugs from DrugBank. These were cross-docked, then filtered through stringent scoring criteria to select top drug-target interactions. In particular, we used MAPK14 and the kinase inhibitor BIM-8 as examples where our stringent thresholds enriched the predicted drug-target interactions with known interactions up to 20 times compared to standard score thresholds. We validated nilotinib as a potent MAPK14 inhibitor in vitro (IC50 40 nM), suggesting a potential use for this drug in treating inflammatory diseases. The published literature indicated experimental evidence for 31 of the top predicted interactions, highlighting the promising nature of our approach. Novel interactions discovered may lead to the drug being repositioned as a therapeutic treatment for its off-target's associated disease, added insight into the drug's mechanism of action, and added insight into the drug's side effects
- …