201 research outputs found
Improved Limit on the Electric Dipole Moment of the Electron
The standard model of particle physics accurately describes all particle physics measurements made so far in the laboratory. However, it is unable to answer many questions that arise from cosmological observations, such as the nature of dark matter and why matter dominates over antimatter throughout the Universe. Theories that contain particles and interactions beyond the standard model, such as models that incorporate supersymmetry, may explain these phenomena. Such particles appear in the vacuum and interact with common particles to modify their properties. For example, the existence of very massive particles whose interactions violate time-reversal symmetry, which could explain the cosmological matter–antimatter asymmetry, can give rise to an electric dipole moment along the spin axis of the electron. No electric dipole moments of fundamental particles have been observed. However, dipole moments only slightly smaller than the current experimental bounds have been predicted to arise from particles more massive than any known to exist. Here we present an improved experimental limit on the electric dipole moment of the electron, obtained by measuring the electron spin precession in a superposition of quantum states of electrons subjected to a huge intramolecular electric field. The sensitivity of our measurement is more than one order of magnitude better than any previous measurement. This result implies that a broad class of conjectured particles, if they exist and time-reversal symmetry is maximally violated, have masses that greatly exceed what can be measured directly at the Large Hadron Collider
Building one molecule from a reservoir of two atoms
Chemical reactions typically proceed via stochastic encounters between
reactants. Going beyond this paradigm, we combine exactly two atoms into a
single, controlled reaction. The experimental apparatus traps two individual
laser-cooled atoms (one sodium and one cesium) in separate optical tweezers and
then merges them into one optical dipole trap. Subsequently, photoassociation
forms an excited-state NaCs molecule. The discovery of previously unseen
resonances near the molecular dissociation threshold and measurement of
collision rates are enabled by the tightly trapped ultracold sample of atoms.
As laser-cooling and trapping capabilities are extended to more elements, the
technique will enable the study of more diverse, and eventually more complex,
molecules in an isolated environment, as well as synthesis of designer
molecules for qubits
Improved Limit on the Electric Dipole Moment of the Electron
The standard model of particle physics accurately describes all particle physics measurements made so far in the laboratory. However, it is unable to answer many questions that arise from cosmological observations, such as the nature of dark matter and why matter dominates over antimatter throughout the Universe. Theories that contain particles and interactions beyond the standard model, such as models that incorporate supersymmetry, may explain these phenomena. Such particles appear in the vacuum and interact with common particles to modify their properties. For example, the existence of very massive particles whose interactions violate time-reversal symmetry, which could explain the cosmological matter–antimatter asymmetry, can give rise to an electric dipole moment along the spin axis of the electron. No electric dipole moments of fundamental particles have been observed. However, dipole moments only slightly smaller than the current experimental bounds have been predicted to arise from particles more massive than any known to exist. Here we present an improved experimental limit on the electric dipole moment of the electron, obtained by measuring the electron spin precession in a superposition of quantum states of electrons subjected to a huge intramolecular electric field. The sensitivity of our measurement is more than one order of magnitude better than any previous measurement. This result implies that a broad class of conjectured particles, if they exist and time-reversal symmetry is maximally violated, have masses that greatly exceed what can be measured directly at the Large Hadron Collider
On the Prospects for Laser Cooling of TlF
We measure the upper state lifetime and two ratios of vibrational branching
fractions f_{v'v} on the B^{3}\Pi_{1}(v') - X^{1}\Sigma^{+}(v) transition of
TlF. We find the B state lifetime to be 99(9) ns. We also determine that the
off-diagonal vibrational decays are highly suppressed: f_{01}/f_{00} <
2x10^{-4} and f_{02}/f_{00} = 1.10(6)%, in excellent agreement with their
predicted values of f_{01}/f_{00} < 8x10^{-4} and f_{02}/f_{00} = 1.0(2)% based
on Franck-Condon factors calculated using Morse and RKR potentials. The
implications of these results for the possible laser cooling of TlF and
fundamental symmetries experiments are discussed.Comment: 5 pages, 2 figure
Shot-noise-limited spin measurements in a pulsed molecular beam
Heavy diatomic molecules have been identified as good candidates for use in
electron electric dipole moment (eEDM) searches. Suitable molecular species can
be produced in pulsed beams, but with a total flux and/or temporal evolution
that varies significantly from pulse to pulse. These variations can degrade the
experimental sensitivity to changes in spin precession phase of an electri-
cally polarized state, which is the observable of interest for an eEDM
measurement. We present two methods for measurement of the phase that provide
immunity to beam temporal variations, and make it possible to reach
shot-noise-limited sensitivity. Each method employs rapid projection of the
spin state onto both components of an orthonormal basis. We demonstrate both
methods using the eEDM-sensitive H state of thorium monoxide (ThO), and use one
of them to measure the magnetic moment of this state with increased accuracy
relative to previous determinations.Comment: 12 pages, 6 figure
Optical cycling in polyatomic molecules with complex hyperfine structure
We have developed and demonstrated a scheme to achieve rotationally-closed
photon cycling in polyatomic molecules with complex hyperfine structure and
sensitivity to hadronic symmetry violation, specifically YbOH and
YbOH. We calculate rotational branching ratios for spontaneous decay
and identify repumping schemes which use electro-optical modulators (EOMs) to
address the hyperfine structure. We demonstrate our scheme by cycling photons
in a molecular beam and verify that we have achieved rotationally-closed
cycling by measuring optical pumping into unaddressed vibrational states. Our
work makes progress along the path toward utilizing photon cycling for state
preparation, readout, and laser cooling in precision measurements of polyatomic
molecules with complex hyperfine structure.Comment: 10 pages, 7 figure
Magnetic and electric dipole moments of the state in ThO
The metastable state in the thorium monoxide (ThO)
molecule is highly sensitive to the presence of a CP-violating permanent
electric dipole moment of the electron (eEDM). The magnetic dipole moment
and the molecule-fixed electric dipole moment of this state are
measured in preparation for a search for the eEDM. The small magnetic moment
displays the predicted cancellation of
spin and orbital contributions in a paramagnetic molecular
state, providing a significant advantage for the suppression of magnetic field
noise and related systematic effects in the eEDM search. In addition, the
induced electric dipole moment is shown to be fully saturated in very modest
electric fields ( 10 V/cm). This feature is favorable for the suppression of
many other potential systematic errors in the ThO eEDM search experiment.Comment: 4 pages, 3 figure
- …