11,752 research outputs found
Superconductivity in striped and multi-Fermi-surface Hubbard models: From the cuprates to the pnictides
Single- and multi-band Hubbard models have been found to describe many of the
complex phenomena that are observed in the cuprate and iron-based
high-temperature superconductors. Simulations of these models therefore provide
an ideal framework to study and understand the superconducting properties of
these systems and the mechanisms responsible for them. Here we review recent
dynamic cluster quantum Monte Carlo simulations of these models, which provide
an unbiased view of the leading correlations in the system. In particular, we
discuss what these simulations tell us about superconductivity in the
homogeneous 2D single-orbital Hubbard model, and how charge stripes affect this
behavior. We then describe recent simulations of a bilayer Hubbard model, which
provides a simple model to study the type and nature of pairing in systems with
multiple Fermi surfaces such as the iron-based superconductors.Comment: Published as part of Superstripes 2011 (Rome) conference proceeding
Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double-continuum of a plasmonic metamolecule
Coupling between tuneable broadband modes of an array of plasmonic
metamolecules and a vibrational mode of carbonyl bond of poly(methyl
methacrylate) is shown experimentally to produce a Fano resonance, which can be
tuned in situ by varying the polarization of incident light. The interaction
between the plasmon modes and the molecular resonance is investigated using
both rigorous electromagnetic calculations and a quantum mechanical model
describing the quantum interference between a discrete state and two continua.
The predictions of the quantum mechanical model are in good agreement with the
experimental data and provide an intuitive interpretation, at the quantum
level, of the plasmon-molecule coupling
d-wave Superconductivity in the Hubbard Model
The superconducting instabilities of the doped repulsive 2D Hubbard model are
studied in the intermediate to strong coupling regime with help of the
Dynamical Cluster Approximation (DCA). To solve the effective cluster problem
we employ an extended Non Crossing Approximation (NCA), which allows for a
transition to the broken symmetry state. At sufficiently low temperatures we
find stable d-wave solutions with off-diagonal long range order. The maximal
occurs for a doping and the doping
dependence of the transition temperatures agrees well with the generic
high- phase diagram.Comment: 5 pages, 5 figure
A Precision Measurement of pp Elastic Scattering Cross Sections at Intermediate Energies
We have measured differential cross sections for \pp elastic scattering with
internal fiber targets in the recirculating beam of the proton synchrotron
COSY. Measurements were made continuously during acceleration for projectile
kinetic energies between 0.23 and 2.59 GeV in the angular range deg. Details of the apparatus and the data analysis are
given and the resulting excitation functions and angular distributions
presented. The precision of each data point is typically better than 4%, and a
relative normalization uncertainty of only 2.5% within an excitation function
has been reached. The impact on phase shift analysis as well as upper bounds on
possible resonant contributions in lower partial waves are discussed.Comment: 23 pages 29 figure
Surmounting Oscillating Barriers
Thermally activated escape over a potential barrier in the presence of
periodic driving is considered. By means of novel time-dependent path-integral
methods we derive asymptotically exact weak-noise expressions for both the
instantaneous and the time-averaged escape rate. The agreement with accurate
numerical results is excellent over a wide range of driving strengths and
driving frequencies.Comment: 4 pages, 4 figure
Jost Function for Coupled Partial Waves
An exact method for direct calculation of the Jost functions and Jost
solutions for non-central potentials which couple partial waves of different
angular momenta is presented. A combination of the variable-constant method
with the complex coordinate rotation is used to replace the matrix
Schr\"odinger equation by an equivalent system of linear first--order
differential equations. Solving these equations numerically, the Jost functions
can be obtained to any desired accuracy for all complex momenta of physical
interest, including the spectral points corresponding to bound and resonant
states. The effectiveness of the method is demonstrated using the Reid
soft-core and Moscow nucleon-nucleon potentials which involve tensor forces.Comment: 32 pages, RevTex, only latex pseudo-figure
- …