301 research outputs found
Strong, Ultra-narrow Peaks of Longitudinal and Hall Resistances in the Regime of Breakdown of the Quantum Hall Effect
With unusually slow and high-resolution sweeps of magnetic field, strong,
ultra-narrow (width down to ) resistance peaks are observed in
the regime of breakdown of the quantum Hall effect. The peaks are dependent on
the directions and even the history of magnetic field sweeps, indicating the
involvement of a very slow physical process. Such a process and the sharp peaks
are, however, not predicted by existing theories. We also find a clear
connection between the resistance peaks and nuclear spin polarization.Comment: 5 pages with 3 figures. To appear in PR
Absence of Scaling in the Integer Quantum Hall Effect
We have studied the conductivity peak in the transition region between the
two lowest integer Quantum Hall states using transmission measurements of edge
magnetoplasmons. The width of the transition region is found to increase
linearly with frequency but remains finite when extrapolated to zero frequency
and temperature. Contrary to prevalent theoretical pictures, our data does not
show the scaling characteristics of critical phenomena.These results suggest
that a different mechanism governs the transition in our experiment.Comment: Minor changes and new references include
Frequency Scaling of Microwave Conductivity in the Integer Quantum Hall Effect Minima
We measure the longitudinal conductivity at frequencies GHz over a range of temperatures K with particular emphasis on the Quantum Hall plateaus. We find that
scales linearly with frequency for a range of magnetic field
around the center of the plateaus, i.e. where . The width of this scaling region decreases with higher
temperature and vanishes by 1.2 K altogether. Comparison between localization
length determined from and DC measurements on the same
wafer show good agreement.Comment: latex 4 pages, 4 figure
Integer Quantum Hall Effect with Realistic Boundary Condition : Exact Quantization and Breakdown
A theory of integer quantum Hall effect(QHE) in realistic systems based on
von Neumann lattice is presented. We show that the momentum representation is
quite useful and that the quantum Hall regime(QHR), which is defined by the
propagator in the momentum representation, is realized. In QHR, the Hall
conductance is given by a topological invariant of the momentum space and is
quantized exactly. The edge states do not modify the value and topological
property of in QHR. We next compute distribution of current based
on effective action and find a finite amount of current in the bulk and the
edge, generally. Due to the Hall electric field in the bulk, breakdown of the
QHE occurs. The critical electric field of the breakdown is proportional to
and the proportional constant has no dependence on Landau levels in
our theory, in agreement with the recent experiments.Comment: 48 pages, figures not included, some additions and revision
Glutamine addiction promotes glucose oxidation in triple-negative breast cancer
Glutamine is a conditionally essential nutrient for many cancer cells, but it remains unclear how consuming glutamine in excess of growth requirements confers greater fitness to glutamine-addicted cancers. By contrasting two breast cancer subtypes with distinct glutamine dependencies, we show that glutamine-indispensable triple-negative breast cancer (TNBC) cells rely on a non-canonical glutamine-to-glutamate overflow, with glutamine carbon routed once through the TCA cycle. Importantly, this single-pass glutaminolysis increases TCA cycle fluxes and replenishes TCA cycle intermediates in TNBC cells, a process that achieves net oxidation of glucose but not glutamine. The coupling of glucose and glutamine catabolism appears hard-wired via a distinct TNBC gene expression profile biased to strip and then sequester glutamine nitrogen, but hampers the ability of TNBC cells to oxidise glucose when glutamine is limiting. Our results provide a new understanding of how metabolically rigid TNBC cells are sensitive to glutamine deprivation and a way to select vulnerable TNBC subtypes that may be responsive to metabolic-targeted therapies
Field-induced breakdown of the quantum Hall effect
A numerical analysis is made of the breakdown of the quantum Hall effect
caused by the Hall electric field in competition with disorder. It turns out
that in the regime of dense impurities, in particular, the number of localized
states decreases exponentially with the Hall field, with its dependence on the
magnetic and electric field summarized in a simple scaling law. The physical
picture underlying the scaling law is clarified. This intra-subband process,
the competition of the Hall field with disorder, leads to critical breakdown
fields of magnitude of a few hundred V/cm, consistent with observations, and
accounts for their magnetic-field dependence \propto B^{3/2} observed
experimentally. Some testable consequences of the scaling law are discussed.Comment: 7 pages, Revtex, 3 figures, to appear in Phys. Rev.
Dynamical scaling of the quantum Hall plateau transition
Using different experimental techniques we examine the dynamical scaling of
the quantum Hall plateau transition in a frequency range f = 0.1-55 GHz. We
present a scheme that allows for a simultaneous scaling analysis of these
experiments and all other data in literature. We observe a universal scaling
function with an exponent kappa = 0.5 +/- 0.1, yielding a dynamical exponent z
= 0.9 +/- 0.2.Comment: v2: Length shortened to fulfil Journal criteri
Self-consistent local-equilibrium model for density profile and distribution of dissipative currents in a Hall bar under strong magnetic fields
Recent spatially resolved measurements of the electrostatic-potential
variation across a Hall bar in strong magnetic fields, which revealed a clear
correlation between current-carrying strips and incompressible strips expected
near the edges of the Hall bar, cannot be understood on the basis of existing
equilibrium theories. To explain these experiments, we generalize the
Thomas-Fermi--Poisson approach for the self-consistent calculation of
electrostatic potential and electron density in {\em total} thermal equilibrium
to a {\em local equilibrium} theory that allows to treat finite gradients of
the electrochemical potential as driving forces of currents in the presence of
dissipation. A conventional conductivity model with small values of the
longitudinal conductivity for integer values of the (local) Landau-level
filling factor shows that, in apparent agreement with experiment, the current
density is localized near incompressible strips, whose location and width in
turn depend on the applied current.Comment: 9 pages, 7 figure
Quantum Hall fluctuations and evidence for charging in the quantum Hall effect
We find that mesoscopic conductance fluctuations in the quantum Hall regime
in silicon MOSFETs display simple and striking patterns. The fluctuations fall
into distinct groups which move along lines parallel to loci of integer filling
factor in the gate voltage-magnetic field plane. Also, a relationship appears
between the fluctuations on quantum Hall transitions and those found at low
densities in zero magnetic field. These phenomena are most naturally attributed
to charging effects. We argue that they are the first unambiguous manifestation
of interactions in dc transport in the integer quantum Hall effect.Comment: 4 pages RevTeX including 4 postscript bitmapped figure
Cytokinesis in bloodstream stage Trypanosoma brucei requires a family of katanins and spastin
Microtubule severing enzymes regulate microtubule dynamics in a wide range of organisms and are implicated in important cell cycle processes such as mitotic spindle assembly and disassembly, chromosome movement and cytokinesis. Here we explore the function of several microtubule severing enzyme homologues, the katanins (KAT80, KAT60a, KAT60b and KAT60c), spastin (SPA) and fidgetin (FID) in the bloodstream stage of the African trypanosome parasite, Trypanosoma brucei. The trypanosome cytoskeleton is microtubule based and remains assembled throughout the cell cycle, necessitating its remodelling during cytokinesis. Using RNA interference to deplete individual proteins, we show that the trypanosome katanin and spastin homologues are non-redundant and essential for bloodstream form proliferation. Further, cell cycle analysis revealed that these proteins play essential but discrete roles in cytokinesis. The KAT60 proteins each appear to be important during the early stages of cytokinesis, while downregulation of KAT80 specifically inhibited furrow ingression and SPA depletion prevented completion of abscission. In contrast, RNA interference of FID did not result in any discernible effects. We propose that the stable microtubule cytoskeleton of T. brucei necessitates the coordinated action of a family of katanins and spastin to bring about the cytoskeletal remodelling necessary to complete cell divisio
- …