19 research outputs found

    The ALADIN system and its canonical model configurations AROME CY41T1 and ALARO CY40T1

    Get PDF
    The ALADIN System is a numerical weather prediction (NWP) system developed by the international ALADIN consortium for operational weather forecasting and research purposes. It is based on a code that is shared with the global model IFS of the ECMWF and the ARPEGE model of Meteo-France. Today, this system can be used to provide a multitude of high-resolution limited-area model (LAM) configurations. A few configurations are thoroughly validated and prepared to be used for the operational weather forecasting in the 16 partner institutes of this consortium. These configurations are called the ALADIN canonical model configurations (CMCs). There are currently three CMCs: the ALADIN baseline CMC, the AROME CMC and the ALARO CMC. Other configurations are possible for research, such as process studies and climate simulations. The purpose of this paper is (i) to define the ALADIN System in relation to the global counterparts IFS and ARPEGE, (ii) to explain the notion of the CMCs, (iii) to document their most recent versions, and (iv) to illustrate the process of the validation and the porting of these configurations to the operational forecast suites of the partner institutes of the ALADIN consortium. This paper is restricted to the forecast model only; data assimilation techniques and postprocessing techniques are part of the ALADIN System but they are not discussed here

    A one-step staining protocol for in-gel fluorescent visualization of proteins

    No full text
    Native polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate (SDS)ā€“PAGE are among the most frequently applied techniques in protein analysis. Here we describe a fast one-step method for fluorescent visualization of proteins. Following PAGE, gels are soaked in solution of potassium ferricyanide (100 mM) in 1 M NaOH, and are kept in the dark for 30 min. Gels are then transferred to water and scanned. The sensitivity of the method is comparable with standard Coomassie Brilliant Blue staining

    The synthetic tubulysin derivative, tubugi-1, improves the innate immune response by macrophage polarization in addition to its direct cytotoxic effects in a murine melanoma model

    No full text
    Synthetic tubugis are equally potent but more stable than their natural forms. Their anticancer potential was estimated on a solid melanoma in vitro and in vivo. Tubugi-1 induced the apoptosis in B16 cells accompanied with strong intracellular production of reactive species, subsequently imposing glutathione and thiol group depletion. Paradoxically, membrane lipids were excluded from the cascade of intracellular oxidation, according to malondialdehyde decrease. Although morphologically apoptosis was typical, externalization of phosphatidylserine (PS) as an early apoptotic event was not detected. Even their exposition is pivotal for apoptotic cell eradication, primary macrophages successfully eliminated PS-deficient tubugi-1 induced apoptotic cells. The tumor volume in animals exposed to the drug in therapeutic mode was reduced in comparison to control as well as to paclitaxel-treated animals. Importantly, macrophages isolated from tubugi-1 treated animals possessed conserved phagocytic activity and were functionally and phenotypically recognized as M1. The cytotoxic effect of tubugi-1 is accomplished through its ability to polarize the macrophages toward M1, probably by PS independent apoptotic cell engulfment. The unique potential of tubugi-1 to prime the innate immune response through the induction of a specific pattern of tumor cell apoptosis can be of extraordinary importance from fundamental and applicable aspects

    Central nervous system-infiltrated immune cells induce calcium increase in astrocytes via astroglial purinergic signaling

    No full text
    Interaction between autoreactive immune cells and astroglia is an important part of the pathologic processes that fuel neurodegeneration in multiple sclerosis. In this inflammatory disease, immune cells enter into the central nervous system (CNS) and they spread through CNS parenchyma, but the impact of these autoreactive immune cells on the activity pattern of astrocytes has not been defined. By exploiting naive astrocytes in culture and CNS-infiltrated immune cells (CNS IICs) isolated from rat with experimental autoimmune encephalomyelitis (EAE), here we demonstrate previously unrecognized properties of immune cell-astrocyte interaction. We show that CNS IICs but not the peripheral immune cell application, evokes a rapid and vigorous intracellular Ca(2+)increase in astrocytes by promoting glial release of ATP. ATP propagated Ca(2+)elevation through glial purinergic P2X7 receptor activation by the hemichannel-dependent nucleotide release mechanism. Astrocyte Ca(2+)increase is specifically triggered by the autoreactive CD4(+)T-cell application and these two cell types exhibit close spatial interaction in EAE. Therefore, Ca(2+)signals may mediate a rapid astroglial response to the autoreactive immune cells in their local environment. This property of immune cell-astrocyte interaction may be important to consider in studies interrogating CNS autoimmune disease

    Combining Electrophoretic and Fluorescence Method for Screening Fine Structural Variations Among Lignin Model Polymers Differing in Monomer Composition

    No full text
    Due to the challenges of cell walls (biomass) and its applications in various new technologies, there is a need of rapid and reliable screening of fine variations in lignin structure. The in vitro synthesized lignin model polymers are good experimental system to relate lignin structure/properties with its applications. We used iso-electric focusing electrophoresis (IEF) and fluorescence spectroscopy for screening fine structural variations in lignin model polymers, synthesized from the three lignin monomers, coniferyl alcohol, ferulic acid and p-coumaric acid, mixed in various ratios. The results were related with the thermal behavior of the polymers, revealed by differential scanning calorimetry. Each polymer had characteristic IEF pattern that can be used as its fingerprint. On the basis of the number and intensity of particular bands, it is possible to detect fine differences between polymer patterns, associated with the charge distribution on the polymer fractions. The blue shift of the main fluorescence maximum position of the polymers increased in the same order as temperature of glass transition, i. e. (polymer from coniferyl alcohol)>[polymer from coniferyl alcohol and ferulic acid 9: 1 (w/w)>[(polymer from coniferyl alcohol, ferulic acid and p-coumaric acid 8: 1: 1)>(polymer from coniferyl alcohol and p-coumaric acid 9: 1). The results show that the proposed combination of the fluorescence method and IEF may be used to gain complementary information on fine structural differences among the polymers, and influence of the types and ratios of the monomers building the polymer structure
    corecore