147 research outputs found

    Dynamic spin susceptibility in the t-J model

    Full text link
    A relaxation-function theory for the dynamic spin susceptibility in the tt--JJ model is presented. By a sum-rule-conserving generalized mean-field approximation (GMFA), the two-spin correlation functions of arbitrary range, the staggered magnetization, the uniform static susceptibility, and the antiferromagnetic correlation length are calculated in a wide region of hole doping and temperaturs. A good agreement with available exact diagonalization (ED) data is found. The correlation length is in reasonable agreement with neutron-scattering experiments on La_{2-\delta}Sr_\delta)CuO_4. Going beyond the GMFA, the self-energy is calculated in the mode-coupling approximation. The spin dynamics at arbitrary frequencies and wave vectors is studied for various temperatures and hole doping. At low doping a spin-wave-type behavior is found as in the Heisenberg model, while at higher doping a strong damping caused by hole hopping occurs, and a relaxation-type spin dynamics is observed in agreement with the ED results. The local spin susceptibility and its (\omega/T) scaling behavior are calculated in a reasonable agreement with experimental and ED data.Comment: 13 pages, 14 figure

    Josephson surface plasmons in spatially confined cuprate superconductors

    Full text link
    In this work, we generalize the theory of localized surface plasmons to the case of high-Tc cuprate superconductors, spatially confined in the form of small spherical particles. At variance from ordinary metals, cuprate superconductors are characterized by a low-energy bulk excitation known as the Josephson plasma wave (JPW), arising from interlayer tunneling of the condensate along the c-axis. The effect of the JPW is revealed in a characteristic spectrum of surface excitations, which we call Josephson surface plasmons. Our results, which apply to any material with a strongly anisotropic electromagnetic response, are worked out in detail for the case of multilayered superconductors supporting both low-frequency (acoustic) and transverse-optical JPW. Spatial confinement of the Josephson plasma waves may represent a new degree of freedom to engineer their frequencies and to explore the link between interlayer tunnelling and high-Tc superconductivity

    Electronic spectrum in high-temperature cuprate superconductors

    Full text link
    A microscopic theory for electronic spectrum of the CuO2 plane within an effective p-d Hubbard model is proposed. Dyson equation for the single-electron Green function in terms of the Hubbard operators is derived which is solved self-consistently for the self-energy evaluated in the noncrossing approximation. Electron scattering on spin fluctuations induced by kinematic interaction is described by a dynamical spin susceptibility with a continuous spectrum. Doping and temperature dependence of electron dispersions, spectral functions, the Fermi surface and the coupling constant are studied in the hole doped case. At low doping, an arc-type Fermi surface and a pseudogap in the spectral function are observed.Comment: 13 pages (revtex), 18 figures, to be published in JET

    Spatial Structure of Spin Polarons in the t-J Model

    Full text link
    The deformation of the quantum Neel state induced by a spin polaron is analyzed in a slave fermion approach. Our method is based on the selfconsistent Born approximation for Green's and the wave function for the quasiparticle. The results of various spin-correlation functions relative to the position of the moving hole are discussed and shown to agree with those available from small cluster calculations. Antiferromagnetic correlations in the direct neighborhood of the hole are reduced, but they remain antiferromagnetic even for J as small as 0.1 t. These correlation functions exhibit dipolar distortions in the spin structure, which sensitively depend on the momentum of the quasiparticle. Their asymptotic decay with the distance from the hole is governed by power laws, yet the spectral weight of the quasiparticles does not vanish.Comment: 12 pages, 2 postscipt files with figures; uses REVTeX, to be published in Phys. Rev. B, Feb. 199

    High Temperature Macroscopic Entanglement

    Full text link
    In this paper I intend to show that macroscopic entanglement is possible at high temperatures. I analyze multipartite entanglement produced by the η\eta pairing mechanism which features strongly in the fermionic lattice models of high TcT_c superconductivity. This problem is shown to be equivalent to calculating multipartite entanglement in totally symmetric states of qubits. I demonstrate that we can conclusively calculate the relative entropy of entanglement within any subset of qubits in an overall symmetric state. Three main results then follow. First, I show that the condition for superconductivity, namely the existence of the off diagonal long range order (ODLRO), is not dependent on two-site entanglement, but on just classical correlations as the sites become more and more distant. Secondly, the entanglement that does survive in the thermodynamical limit is the entanglement of the total lattice and, at half filling, it scales with the log of the number of sites. It is this entanglement that will exist at temperatures below the superconducting critical temperature, which can currently be as high as 160 Kelvin. Thirdly, I prove that a complete mixture of symmetric states does not contain any entanglement in the macroscopic limit. On the other hand, the same mixture of symmetric states possesses the same two qubit entanglement features as the pure states involved, in the sense that the mixing does not destroy entanglement for finite number of qubits, albeit it does decrease it. Maximal mixing of symmetric states also does not destroy ODLRO and classical correlations. I discuss various other inequalities between different entanglements as well as generalizations to the subsystems of any dimensionality (i.e. higher than spin half).Comment: 14 pages, no figure

    Discontinuity of capacitance at the onset of surface superconductivity

    Full text link
    The effect of the magnetic field on a capacitor with a superconducting electrode is studied within the Ginzburg-Landau approach. It is shown that the capacitance has a discontinuity at the onset of the surface superconductivity Bc3B_{\rm c3} which is expressed as a discontinuity in the penetration depth of the electric field into metals. Estimates show that this discontinuity is observable with recent bridges for both conventional and high-TcT_{\rm c} superconductors of the type-II

    Operator projection method applied to the single-particle Green's function in the Hubbard model

    Full text link
    A new non-perturbative framework for many-body correlated systems is formulated by extending the operator projection method (OPM). This method offers a systematic expansion which enables us to project into the low-energy structure after extracting the higher-energy hierarchy. This method also opens a way to systematically take into account the effects of collective excitations. The Mott-Hubbard metal-insulator transition in the Hubbard model is studied by means of this projection beyond the second order by taking into account magnetic and charge fluctuations in the presence of the high-energy Mott-Hubbard structure. At half filling, the Mott-Hubbard gap is correctly eproduced between the separated two bands. Near half filling, a strongly renormalized low-energy single-particle excitations coexisting with the Mott-Hubbard bands are shown to appear. Signifcance of momentum-dependent self-energy in the results is stressed.Comment: 6 pages, final version to appear in J. Phys. Soc. Jp

    Spectral functions and pseudogap in the t-J model

    Full text link
    We calculate spectral functions within the t-J model as relevant to cuprates in the regime from low to optimum doping. On the basis of equations of motion for projected operators an effective spin-fermion coupling is derived. The self energy due to short-wavelength transverse spin fluctuations is shown to lead to a modified selfconsistent Born approximation, which can explain strong asymmetry between hole and electron quasiparticles. The coupling to long-wavelength longitudinal spin fluctuations governs the low-frequency behavior and results in a pseudogap behavior, which at low doping effectively truncates the Fermi surface.Comment: Minor corrections; to appear in Phys. Rev. B (RC

    Surface deformation caused by the Abrikosov vortex lattice

    Full text link
    In superconductors penetrated by Abrikosov vortices the magnetic pressure and the inhomogeneous condensate density induce a deformation of the ionic lattice. We calculate how this deformation corrugates the surface of a semi-infinite sample. The effect of the surface dipole is included

    Spatially-resolved relaxation dynamics of photoinduced quasiparticles in underdoped YBasub2sub 2Cusub3sub 3Osub7deltasub {7-delta}

    Full text link
    The spatially-resolved relaxation characteristics of photoinduced quasiparticles (QPs) in CuOsub2sub 2 planes of underdoped YBCO are disclosed by polarized fs time-resolved spectroscopy. The relaxation time (tau) along b axis diverges at Tc, and appears to be governed by a temperature-dependent gap Delta(T) at T Tc, a monotonic increase of tau with decreasing T along the b axis and ab diagonal was observed and can be attributed to a temperature-independent gap Deltasubpsub p. The results lend support to recombination dominant scenario of QP dynamics. However, the QP thermalization may take part along the nodal direction in the highly underdoped samples.Comment: 16 pages, 4 figures. To be published in Physical Review B, Brief Repor
    corecore