5,003 research outputs found

    Relative contributions of the fraction of unfrozen water and of salt concentration to the survival of slowly frozen human erythrocytes

    Get PDF
    As suspensions of cells freeze, the electrolytes and other solutes in the external solution concentrate progressively, and the cells undergo osmotic dehydration if cooling is slow. The progressive concentration of solute comes about as increasing amounts of pure ice precipitate out of solution and cause the liquid-filled channels in which the cells are sequestered to dwindle in size. The consensus has been that slow freezing injury is related to the composition of the solution in these channels and not to the amount of residual liquid. The purpose of the research reported here was to test this assumption on human erythrocytes. Ordinarily, solute concentration and the amount of liquid in the unfrozen channels are inversely coupled. To vary them independently, one must vary the initial solute concentration. Two solutes were used here: NaCl and the permeating protective additive glycerol. To vary the total initial solute concentration while holding the mass ratio of glycerol to NaCl constant, we had to allow the NaCl tonicity to depart from isotonic. Specifically, human red cells were suspended in solutions with weight ratios of glycerol to NaCl of either 5.42 or 11.26, where the concentrations of NaCl were 0.6, 0.75, 1.0, 2.0, 3.0, or 4.0 times isotonic. Samples were then frozen to various subzero temperatures, which were chosen to produce various molalities of NaCl (0.24–3.30) while holding the fraction of unfrozen water constant, or conversely to produce various unfrozen fractions (0.03–0.5) while holding the molality of salt constant. (Not all combinations of these values were possible). The following general findings emerged: (a) few cells survived the freezing of greater than 90% of the extracellular water regardless of the salt concentration in the residual unfrozen portion. (b) When the fraction of frozen water was less than 75% the majority of the cells survived even when the salt concentration in the unfrozen portion exceeded 2 molal. (c) Salt concentration affected survival significantly only when the frozen fraction lay between 75 and 90%. To find a major effect on survival of the fraction of water that remains unfrozen was unexpected. It may require major modifications in how cryobiologists view solution-effect injury and its prevention

    Molecular-beam epitaxy of CrSi_2 on Si(111)

    Get PDF
    Chromium disilicide layers have been grown on Si(111) in a commercial molecular‐beam epitaxy machine. Thin layers (10 nm) exhibit two epitaxial relationships, which have been identified as CrSi_2(0001)//Si(111) with CrSi_2[1010]//Si[101], and CrSi_2(0001)//Si(111) with CrSi_2[1120]//Si[101]. The latter case represents a 30° rotation of the CrSi_2 layer about the Si surface normal relative to the former case. Thick (210 nm) layers were grown by four different techniques, and the best‐quality layer was obtained by codeposition of Cr and Si at an elevated temperature. These layers are not single crystal; the largest grains are observed in a layer grown at 825 °C and are 1–2 ÎŒm across

    Stable gravastars with generalised exteriors

    Full text link
    New spherically symmetric gravastar solutions, stable to radial perturbations, are found by utilising the construction of Visser and Wiltshire. The solutions possess an anti--de Sitter or de Sitter interior and a Schwarzschild--(anti)--de Sitter or Reissner--Nordstr\"{o}m exterior. We find a wide range of parameters which allow stable gravastar solutions, and present the different qualitative behaviours of the equation of state for these parameters.Comment: 14 pages, 11 figures, to appear in Classical and Quantum Gravit

    Langevin Equation for the Rayleigh model with finite-ranged interactions

    Full text link
    Both linear and nonlinear Langevin equations are derived directly from the Liouville equation for an exactly solvable model consisting of a Brownian particle of mass MM interacting with ideal gas molecules of mass mm via a quadratic repulsive potential. Explicit microscopic expressions for all kinetic coefficients appearing in these equations are presented. It is shown that the range of applicability of the Langevin equation, as well as statistical properties of random force, may depend not only on the mass ratio m/Mm/M but also by the parameter Nm/MNm/M, involving the average number NN of molecules in the interaction zone around the particle. For the case of a short-ranged potential, when Nâ‰Ș1N\ll 1, analysis of the Langevin equations yields previously obtained results for a hard-wall potential in which only binary collisions are considered. For the finite-ranged potential, when multiple collisions are important (N≫1N\gg 1), the model describes nontrivial dynamics on time scales that are on the order of the collision time, a regime that is usually beyond the scope of more phenomenological models.Comment: 21 pages, 1 figure. To appear in Phys. Rev.

    Bogomolnyi Bound with a Cosmological Constant

    Get PDF
    Bogomolnyi-type bound is constructed for the topological solitons in O(3) nonlinear σ\sigma model coupled to gravity with a negative cosmological constant. Spacetimes made by self-dual solutions form a class of G\"{o}del-type universe. In the limit of a spinless massive point particle, the obtained stationary metric does not violate the causality and it is a new point particle solution different from the known static hyperboloid and black hole. We also showed that static Nielsen-Olesen vortices saturate Bogomolnyi-type bound only when the cosmological constant vanishes.Comment: 11 pages, RevTe

    Cosmological Dark Energy: Prospects for a Dynamical Theory

    Get PDF
    We present an approach to the problem of vacuum energy in cosmology, based on dynamical screening of Lambda on the horizon scale. We review first the physical basis of vacuum energy as a phenomenon connected with macroscopic boundary conditions, and the origin of the idea of its screening by particle creation and vacuum polarization effects. We discuss next the relevance of the quantum trace anomaly to this issue. The trace anomaly implies additional terms in the low energy effective theory of gravity, which amounts to a non-trivial modification of the classical Einstein theory, fully consistent with the Equivalence Principle. We show that the new dynamical degrees of freedom the anomaly contains provide a natural mechanism for relaxing Lambda to zero on cosmological scales. We consider possible signatures of the restoration of conformal invariance predicted by the fluctuations of these new scalar degrees of freedom on the spectrum and statistics of the CMB, in light of the latest bounds from WMAP. Finally we assess the prospects for a new cosmological model in which the dark energy adjusts itself dynamically to the cosmological horizon boundary, and therefore remains naturally of order H^2 at all times without fine tuning.Comment: 50 pages, Invited Contribution to New Journal of Physics Focus Issue on Dark Energ

    Where are all the gravastars? Limits upon the gravastar model from accreting black holes

    Get PDF
    The gravastar model, which postulates a strongly correlated thin shell of anisotropic matter surrounding a region of anti-de Sitter space, has been proposed as an alternative to black holes. We discuss constraints that present-day observations of well-known black hole candidates place on this model. We focus upon two black hole candidates known to have extraordinarily low luminosities: the supermassive black hole in the Galactic Center, Sagittarius A*, and the stellar-mass black hole, XTE J1118+480. We find that the length scale for modifications of the type discussed in Chapline et al. (2003) must be sub-Planckian.Comment: 11 pages, 4 figure

    Gravastar Solutions with Continuous Pressures and Equation of State

    Full text link
    We study the gravitational vacuum star (gravastar) configuration as proposed by other authors in a model where the interior de Sitter spacetime segment is continuously extended to the exterior Schwarzschild spacetime. The multilayered structure in previous papers is replaced by a continuous stress-energy tensor at the price of introducing anisotropy in the (fluid) model of the gravastar. Either with an ansatz for the equation of state connecting the radial prp_r and tangential ptp_t pressure or with a calculated equation of state with non-homogeneous energy/fluid density, solutions are obtained which in all aspects satisfy the conditions expected for an anisotropic gravastar. Certain energy conditions have been shown to be obeyed and a polytropic equation of state has been derived. Stability of the solution with respect to possible axial perturbation is shown to hold.Comment: 19 pages, 9 figures. Latest version contains new and updated references along with some clarifying remarks in the stability analysi

    Ultra-Rapid Warming Yields High Survival of Mouse Oocytes Cooled to −196°C in Dilutions of a Standard Vitrification Solution

    Get PDF
    Intracellular ice is generally lethal. One way to avoid it is to vitrify cells; that is, to convert cell water to a glass rather than to ice. The belief has been that this requires both the cooling rate and the concentration of glass-inducing solutes be very high. But high solute concentrations can themselves be damaging. However, the findings we report here on the vitrification of mouse oocytes are not in accord with the first belief that cooling needs to be extremely rapid. The important requirement is that the warming rate be extremely high. We subjected mouse oocytes in the vitrification solution EAFS 10/10 to vitrification procedures using a broad range of cooling and warming rates. Morphological survivals exceeded 80% when they were warmed at the highest rate (117,000°C/min) even when the prior cooling rate was as low as 880°C/min. Functional survival was >81% and 54% with the highest warming rate after cooling at 69,000 and 880°C/min, respectively. Our findings are also contrary to the second belief. We show that a high percentage of mouse oocytes survive vitrification in media that contain only half the usual concentration of solutes, provided they are warmed extremely rapidly; that is, >100,000°C/min. Again, the cooling rate is of less consequence

    Langevin equation for the extended Rayleigh model with an asymmetric bath

    Full text link
    In this paper a one-dimensional model of two infinite gases separated by a movable heavy piston is considered. The non-linear Langevin equation for the motion of the piston is derived from first principles for the case when the thermodynamic parameters and/or the molecular masses of gas particles on left and right sides of the piston are different. Microscopic expressions involving time correlation functions of the force between bath particles and the piston are obtained for all parameters appearing in the non-linear Langevin equation. It is demonstrated that the equation has stationary solutions corresponding to directional fluctuation-induced drift in the absence of systematic forces. In the case of ideal gases interacting with the piston via a quadratic repulsive potential, the model is exactly solvable and explicit expressions for the kinetic coefficients in the non-linear Langevin equation are derived. The transient solution of the non-linear Langevin equation is analyzed perturbatively and it is demonstrated that previously obtained results for systems with the hard-wall interaction are recovered.Comment: 10 pages. To appear in Phys. Rev.
    • 

    corecore