11 research outputs found

    Systems-level interactions between insulin–EGF networks amplify mitogenic signaling

    Get PDF
    Crosstalk mechanisms have not been studied as thoroughly as individual signaling pathways. We exploit experimental and computational approaches to reveal how a concordant interplay between the insulin and epidermal growth factor (EGF) signaling networks can potentiate mitogenic signaling. In HEK293 cells, insulin is a poor activator of the Ras/ERK (extracellular signal-regulated kinase) cascade, yet it enhances ERK activation by low EGF doses. We find that major crosstalk mechanisms that amplify ERK signaling are localized upstream of Ras and at the Ras/Raf level. Computational modeling unveils how critical network nodes, the adaptor proteins GAB1 and insulin receptor substrate (IRS), Src kinase, and phosphatase SHP2, convert insulin-induced increase in the phosphatidylinositol-3,4,5-triphosphate (PIP3) concentration into enhanced Ras/ERK activity. The model predicts and experiments confirm that insulin-induced amplification of mitogenic signaling is abolished by disrupting PIP3-mediated positive feedback via GAB1 and IRS. We demonstrate that GAB1 behaves as a non-linear amplifier of mitogenic responses and insulin endows EGF signaling with robustness to GAB1 suppression. Our results show the feasibility of using computational models to identify key target combinations and predict complex cellular responses to a mixture of external cues

    Switches, Excitable Responses and Oscillations in the Ring1B/Bmi1 Ubiquitination System

    Get PDF
    In an active, self-ubiquitinated state, the Ring1B ligase monoubiquitinates histone H2A playing a critical role in Polycomb-mediated gene silencing. Following ubiquitination by external ligases, Ring1B is targeted for proteosomal degradation. Using biochemical data and computational modeling, we show that the Ring1B ligase can exhibit abrupt switches, overshoot transitions and self-perpetuating oscillations between its distinct ubiquitination and activity states. These different Ring1B states display canonical or multiply branched, atypical polyubiquitin chains and involve association with the Polycomb-group protein Bmi1. Bistable switches and oscillations may lead to all-or-none histone H2A monoubiquitination rates and result in discrete periods of gene (in)activity. Switches, overshoots and oscillations in Ring1B catalytic activity and proteosomal degradation are controlled by the abundances of Bmi1 and Ring1B, and the activities and abundances of external ligases and deubiquitinases, such as E6-AP and USP7

    Global study of a family of cubic Lienard equations.

    No full text
    We derive the global bifurcation diagram of a three-parameter family of cubic Liénard systems. This family seems to have a universal character in that its bifurcation diagram (or parts of it) appears in many models from applications for which a combination of hysteretic and self-oscillatory behaviour is essential. The family emerges as a partial unfolding of a doubly degenerate Bogdanov-Takens point, that is. of the codimension-four singularity with nilpotent linear part and no quadratic terms in the normal form. We give a new presentation of a local four-parameter bifurcation diagram which is a candidate for the universal unfolding of this singularity
    corecore