165 research outputs found

    Aggregation and fibril morphology of the Arctic mutation of Alzheimer's Aβ peptide by CD, TEM, STEM and in situ AFM

    Get PDF
    Morphology of aggregation intermediates, polymorphism of amyloid fibrils and aggregation kinetics of the "Arctic" mutant of the Alzheimer's amyloid β-peptide, Aβ(1-40)(E22G), in a physiologically relevant Tris buffer (pH 7.4) were thoroughly explored in comparison with the human wild type Alzheimer's amyloid peptide, wt-Aβ(1-40), using both in situ atomic force and electron microscopy, circular dichroism and thioflavin T fluorescence assays. For arc-Aβ(1-40) at the end of the 'lag'-period of fibrillization an abrupt appearance of ∼3nm size 'spherical aggregates' with a homogeneous morphology, was identified. Then, the aggregation proceeds with a rapid growth of amyloid fibrils with a variety of morphologies, while the spherical aggregates eventually disappeared during in situ measurements. Arc-Aβ(1-40) was also shown to form fibrils at much lower concentrations than wt-Aβ(1-40): ≤2.5μM and 12.5μM, respectively. Moreover, at the same concentration, 50μM, the aggregation process proceeds more rapidly for arc-Aβ(1-40): the first amyloid fibrils were observed after c.a. 72h from the onset of incubation as compared to approximately 7days for wt-Aβ(1-40). Amyloid fibrils of arc-Aβ(1-40) exhibit a large variety of polymorphs, at least five, both coiled and non-coiled distinct fibril structures were recognized by AFM, while at least four types of arc-Aβ(1-40) fibrils were identified by TEM and STEM and their mass-per-length statistics were collected suggesting supramolecular structures with two, four and six β-sheet laminae. Our results suggest a pathway of fibrillogenesis for full-length Alzheimer's peptides with small and structurally ordered transient spherical aggregates as on-pathway immediate precursors of amyloid fibrils. © 2012 Elsevier Inc

    Stimulation of MAP kinase pathways after maternal IL-1β exposure induces fetal lung fluid absorption in guinea pigs

    Get PDF
    BACKGROUND: We tested the hypothesis that maternal interleukin-1β (IL-1β) pretreatment and induction of fetal cortisol synthesis activates MAP kinases and thereby affects lung fluid absorption in preterm guinea pigs. METHODS: IL-1β was administered subcutaneously daily to timed-pregnant guinea pigs for three days. Fetuses were obtained by abdominal hysterotomy and instilled with isosmolar 5% albumin into the lungs and lung fluid movement was measured over 1 h by mass balance. MAP kinase expression was measured by western blot. RESULTS: Lung fluid absorption was induced at 61 days (D) gestation and stimulated at 68D gestation by IL-1β. Maternal IL-1β pretreatment upregulated ERK and upstream MEK expression at both 61 and 68D gestation, albeit being much more pronounced at 61D gestation. U0126 instillation completely blocked IL-1β-induced lung fluid absorption as well as IL-1β-induced/stimulated ERK expression. Cortisol synthesis inhibition by metyrapone attenuated ERK expression and lung fluid absorption in IL-1β-pretreated fetal lungs. JNK expression after maternal IL-1β pretreatment remained unaffected at either gestation age. CONCLUSION: These data implicate the ERK MAP kinase pathway as being important for IL-1β induction/stimulation of lung fluid absorption in fetal guinea pigs

    Expression of the NH2-Terminal Fragment of RasGAP in Pancreatic β-Cells Increases Their Resistance to Stresses and Protects Mice From Diabetes

    Get PDF
    OBJECTIVE: Our laboratory has previously established in vitro that a caspase-generated RasGAP NH(2)-terminal moiety, called fragment N, potently protects cells, including insulinomas, from apoptotic stress. We aimed to determine whether fragment N can increase the resistance of pancreatic beta-cells in a physiological setting. RESEARCH DESIGN AND METHODS: A mouse line, called rat insulin promoter (RIP)-N, was generated that bears a transgene containing the rat insulin promoter followed by the cDNA-encoding fragment N. The histology, functionality, and resistance to stress of RIP-N islets were then assessed. RESULTS: Pancreatic beta-cells of RIP-N mice express fragment N, activate Akt, and block nuclear factor kappaB activity without affecting islet cell proliferation or the morphology and cellular composition of islets. Intraperitoneal glucose tolerance tests revealed that RIP-N mice control their glycemia similarly as wild-type mice throughout their lifespan. Moreover, islets isolated from RIP-N mice showed normal glucose-induced insulin secretory capacities. They, however, displayed increased resistance to apoptosis induced by a series of stresses including inflammatory cytokines, fatty acids, and hyperglycemia. RIP-N mice were also protected from multiple low-dose streptozotocin-induced diabetes, and this was associated with reduced in vivo beta-cell apoptosis. CONCLUSIONS: Fragment N efficiently increases the overall resistance of beta-cells to noxious stimuli without interfering with the physiological functions of the cells. Fragment N and the pathway it regulates represent, therefore, a potential target for the development of antidiabetes tools

    Comparison of two normative paediatric gait databases

    Get PDF
    The availability of age-matched normative data is an essential component of clinical gait analyses. Comparison of normative gait databases is difficult due to the high-dimensionality and temporal nature of the various gait waveforms. The purpose of this study was to provide a method of comparing the sagittal joint angle data between two normative databases. We compared a modern gait database to the historical San Diego database using statistical classifiers developed by Tingley et al. (2002). Gait data were recorded from 60 children aged 1–13 years. A six-camera Vicon 512 motion analysis system and two force plates were utilized to obtain temporal-spatial, kinematic, and kinetic parameters during walking. Differences between the two normative data sets were explored using the classifier index scores, and the mean and covariance structure of the joint angle data from each lab. Significant differences in sagittal angle data between the two databases were identified and attributed to technological advances and data processing techniques (data smoothing, sampling, and joint angle approximations). This work provides a simple method of database comparison using trainable statistical classifiers

    Lipopolysaccharides Impair Insulin Gene Expression in Isolated Islets of Langerhans via Toll-Like Receptor-4 and NF-κB Signalling

    Get PDF
    BACKGROUND:Type 2 diabetes is characterized by pancreatic β-cell dysfunction and is associated with low-grade inflammation. Recent observations suggest that the signalling cascade activated by lipopolysaccharides (LPS) binding to Toll-Like Receptor 4 (TLR4) exerts deleterious effects on pancreatic β-cell function; however, the molecular mechanisms of these effects are incompletely understood. In this study, we tested the hypothesis that LPS alters insulin gene expression via TLR4 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in islets. METHODOLOGY/PRINCIPAL FINDINGS:A 24-h exposure of isolated human, rat and mouse islets of Langerhans to LPS dose-dependently reduced insulin gene expression. This was associated in mouse and rat islets with decreased mRNA expression of pancreas-duodenum homebox-1 (PDX-1) and mammalian homologue of avian MafA/l-Maf (MafA). Accordingly, LPS exposure also decreased glucose-induced insulin secretion. LPS repression of insulin, PDX-1 and MafA expression, as well as its inhibition of insulin secretion, were not observed in islets from TLR4-deficient mice. LPS inhibition of β-cell gene expression in rat islets was prevented by inhibition of the NF-κB pathway, but not the p38 mitogen-activated protein kinase (p38 MAPK) pathway. CONCLUSIONS/SIGNIFICANCE:Our findings demonstrate that LPS inhibit β-cell gene expression in a TLR4-dependent manner and via NF-κB signaling in pancreatic islets, suggesting a novel mechanism by which the gut microbiota might affect pancreatic β-cell function

    K+ channel openers restore verapamil-inhibited lung fluid resolution and transepithelial ion transport

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lung epithelial Na<sup>+ </sup>channels (ENaC) are regulated by cell Ca<sup>2+ </sup>signal, which may contribute to calcium antagonist-induced noncardiogenic lung edema. Although K<sup>+ </sup>channel modulators regulate ENaC activity in normal lungs, the therapeutical relevance and the underlying mechanisms have not been completely explored. We hypothesized that K<sup>+ </sup>channel openers may restore calcium channel blocker-inhibited alveolar fluid clearance (AFC) by up-regulating both apical and basolateral ion transport.</p> <p>Methods</p> <p>Verapamil-induced depression of heterologously expressed human αβγ ENaC in <it>Xenopus </it>oocytes, apical and basolateral ion transport in monolayers of human lung epithelial cells (H441), and <it>in vivo </it>alveolar fluid clearance were measured, respectively, using the two-electrode voltage clamp, Ussing chamber, and BSA protein assays. Ca<sup>2+ </sup>signal in H441 cells was analyzed using Fluo 4AM.</p> <p>Results</p> <p>The rate of <it>in vivo </it>AFC was reduced significantly (40.6 ± 6.3% of control, <it>P </it>< 0.05, n = 12) in mice intratracheally administrated verapamil. K<sub>Ca3.1 </sub>(1-EBIO) and K<sub>ATP </sub>(minoxidil) channel openers significantly recovered AFC. In addition to short-circuit current (Isc) in intact H441 monolayers, both apical and basolateral Isc levels were reduced by verapamil in permeabilized monolayers. Moreover, verapamil significantly altered Ca<sup>2+ </sup>signal evoked by ionomycin in H441 cells. Depletion of cytosolic Ca<sup>2+ </sup>in αβγ ENaC-expressing oocytes completely abolished verapamil-induced inhibition. Intriguingly, K<sub>V </sub>(pyrithione-Na), K <sub>Ca3.1 </sub>(1-EBIO), and K<sub>ATP </sub>(minoxidil) channel openers almost completely restored the verapamil-induced decrease in Isc levels by diversely up-regulating apical and basolateral Na<sup>+ </sup>and K<sup>+ </sup>transport pathways.</p> <p>Conclusions</p> <p>Our observations demonstrate that K<sup>+ </sup>channel openers are capable of rescuing reduced vectorial Na<sup>+ </sup>transport across lung epithelial cells with impaired Ca<sup>2+ </sup>signal.</p

    Maternal Behavior is Impaired in Female Mice Lacking Type 3 Adenylyl Cyclase

    Get PDF
    Although chemosensory signals generated by mouse pups may trigger maternal behavior of females, the mechanism for detection of these signals has not been fully defined. As some odorant receptors are coupled to the type 3 adenylyl cyclase (AC3), we evaluated the role of AC3 for maternal behavior using AC3−/− female mice. Here, we report that maternal behavior is impaired in virgin and postpartum AC3−/− mice. Female AC3−/− mice failed the pup retrieval assay, did not construct well-defined nests, and did not exhibit maternal aggression. Furthermore, AC3−/− females could not detect odorants or pup urine in the odorant habituation test and were unable to detect pups by chemoreception. In contrast to wild-type mice, AC activity in main olfactory epithelium (MOE) preparations from AC3−/− female mice was not stimulated by odorants or pheromones. Moreover, odorants and pheromones did not evoke electro-olfactogram (EOG) responses in the MOE of AC3−/− female mice. We hypothesize that the detection of chemical signals that trigger maternal behavior in female mice depends upon AC3 in the MOE

    Co-regulation of a large and rapidly evolving repertoire of odorant receptor genes

    Get PDF
    The olfactory system meets niche- and species-specific demands by an accelerated evolution of its odorant receptor repertoires. In this review, we describe evolutionary processes that have shaped olfactory and vomeronasal receptor gene families in vertebrate genomes. We emphasize three important periods in the evolution of the olfactory system evident by comparative genomics: the adaptation to land in amphibian ancestors, the decline of olfaction in primates, and the delineation of putative pheromone receptors concurrent with rodent speciation. The rapid evolution of odorant receptor genes, the sheer size of the repertoire, as well as their wide distribution in the genome, presents a developmental challenge: how are these ever-changing odorant receptor repertoires coordinated within the olfactory system? A central organizing principle in olfaction is the specialization of sensory neurons resulting from each sensory neuron expressing only ~one odorant receptor allele. In this review, we also discuss this mutually exclusive expression of odorant receptor genes. We have considered several models to account for co-regulation of odorant receptor repertoires, as well as discussed a new hypothesis that invokes important epigenetic properties of the system

    Infectious diseases in allogeneic haematopoietic stem cell transplantation: prevention and prophylaxis strategy guidelines 2016

    Get PDF
    corecore