102 research outputs found

    Synuclein Deficiency Results in Age-Related Respiratory and Cardiovascular Dysfunctions in Mice

    Get PDF
    Synuclein (α, β, and γ) proteins are highly expressed in presynaptic terminals, and significant data exist supporting their role in regulating neurotransmitter release. Targeting the gene encoding α-synuclein is the basis of many animal models of Parkinson’s disease (PD). However, the physiological role of this family of proteins in not well understood and could be especially relevant as interfering with accumulation of α-synuclein level has therapeutic potential in limiting PD progression. The long-term effects of their removal are unknown and given the complex pathophysiology of PD, could exacerbate other clinical features of the disease, for example dysautonomia. In the present study, we sought to characterize the autonomic phenotypes of mice lacking all synucleins (α, β, and γ; αβγ−/−) in order to better understand the role of synuclein-family proteins in autonomic function. We probed respiratory and cardiovascular reflexes in conscious and anesthetized, young (4 months) and aged (18–20 months) αβγ−/− male mice. Aged mice displayed impaired respiratory responses to both hypoxia and hypercapnia when breathing activities were recorded in conscious animals using whole-body plethysmography. These animals were also found to be hypertensive from conscious blood pressure recordings, to have reduced pressor baroreflex gain under anesthesia, and showed reduced termination of both pressor and depressor reflexes. The present data demonstrate the importance of synuclein in the normal function of respiratory and cardiovascular reflexes during aging

    Molecular cloning and expression pattern of rpr-1, a resiniferatoxin-binding, phosphotriesterase-related protein, expressed in rat kidney tubules1The sequence of rpr-1 has the EMBL accession number X99477.1

    Get PDF
    AbstractBacterial phosphotriesterases are enzymes that hydrolyse phosphotriester-containing organophosphate pesticides. Resiniferatoxin is a vanilloid that desensitises nociceptive neurons. By screening a rat cDNA library with labelled resiniferatoxin, we unexpectedly isolated a novel rat phosphotriesterase homologue, here named rpr-1, that encodes a 349 amino acid, 39 kDa protein (confirmed by in vitro translation). Northern blotting and in situ hybridisation show expression primarily in proximal tubules of the kidney, in which rpr-1 distribution correlates with resiniferatoxin-binding activity. These results suggest an unsuspected link between the phosphotriesterase enzyme family and resiniferatoxin toxicity and pharmacology

    Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase

    Get PDF
    Misfolded α-synuclein is a key factor in the pathogenesis of Parkinson's disease (PD). However, knowledge about a physiological role for the native, unfolded α-synuclein is limited. Using brains of mice lacking α-, β-, and γ-synuclein, we report that extracellular monomeric α-synuclein enters neurons and localizes to mitochondria, interacts with ATP synthase subunit α, and modulates ATP synthase function. Using a combination of biochemical, live-cell imaging and mitochondrial respiration analysis, we found that brain mitochondria of α-, β-, and γ-synuclein knock-out mice are uncoupled, as characterized by increased mitochondrial respiration and reduced mitochondrial membrane potential. Furthermore, synuclein deficiency results in reduced ATP synthase efficiency and lower ATP levels. Exogenous application of low unfolded α-synuclein concentrations is able to increase the ATP synthase activity that rescues the mitochondrial phenotypes observed in synuclein deficiency. Overall, the data suggest that α-synuclein is a previously unrecognized physiological regulator of mitochondrial bioenergetics through its ability to interact with ATP synthase and increase its efficiency. This may be of particular importance in times of stress or PD mutations leading to energy depletion and neuronal cell toxicity. SIGNIFICANCE STATEMENT: Misfolded α-synuclein aggregations in the form of Lewy bodies have been shown to be a pathological hallmark in histological staining of Parkinson's disease (PD) patient brains. It is known that misfolded α-synuclein is a key driver in PD pathogenesis, but the physiological role of unfolded monomeric α-synuclein remains unclear. Using neuronal cocultures and isolated brain mitochondria of α-, β-, and γ-synuclein knock-out mice and monomeric α-synuclein, this current study shows that α-synuclein in its unfolded monomeric form improves ATP synthase efficiency and mitochondrial function. The ability of monomeric α-synuclein to enhance ATP synthase efficiency under physiological conditions may be of importance when α-synuclein undergoes the misfolding and aggregation reported in PD

    β-synuclein potentiates synaptic vesicle dopamine uptake and rescues dopaminergic neurons from MPTP-induced death in the absence of other synucleins.

    Get PDF
    Synucleins, a family of three proteins highly expressed in neurons, are predominantly known for the direct involvement of α-synuclein in the aetiology and pathogenesis of Parkinson's and certain other neurodegenerative diseases, but their precise physiological functions are still not fully understood. Previous studies have demonstrated the importance of α-synuclein as a modulator of various mechanisms implicated in chemical neurotransmission, but information concerning the involvement of other synuclein family members, β-synuclein and γ-synuclein, in molecular processes within presynaptic terminals is limited. Here we demonstrated that the vesicular monoamine transporter 2 (VMAT2)-dependent dopamine uptake by synaptic vesicles isolated from the striatum of mice lacking β-synuclein is significantly reduced. Reciprocally, reintroduction, either in vivo or in vitro, of β-synuclein but not α- or γ-synuclein improves uptake by triple α/β/γ-synuclein deficient striatal vesicles. We also showed that the resistance of dopaminergic neurons of the substantia nigra pars compacta (SNpc) to subchronic administration of the Parkinson's disease-inducing prodrug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) depends on the presence of β-synuclein but only when one or both other synucleins are absent. Furthermore, proteomic analysis of synuclein-deficient synaptic vesicles vs those containing only β-synuclein revealed differences in their protein compositions. We suggest that the observed potentiation of dopamine uptake by β-synuclein might be caused by different protein architecture of the synaptic vesicles. It is also feasible that such structural changes improve synaptic vesicle sequestration of 1-methyl-4-phenylpyridinium (MPP+), a toxic metabolite of MPTP, which would explain why dopaminergic neurons expressing β-synuclein and lacking α-synuclein and/or γ-synuclein are resistant to this neurotoxin

    Monomeric alpha-synuclein exerts a physiological role in brain ATP synthase

    Get PDF
    Misfolded α-synuclein is a key factor in the pathogenesis of Parkinson's disease (PD). However, knowledge about a physiological role for the native, unfolded α-synuclein is limited. Using brains of mice lacking α-, β-, and γ-synuclein, we report that extracellular monomeric α-synuclein enters neurons and localizes to mitochondria, interacts with ATP synthase subunit α, and modulates ATP synthase function. Using a combination of biochemical, live-cell imaging and mitochondrial respiration analysis, we found that brain mitochondria of α-, β-, and γ-synuclein knock-out mice are uncoupled, as characterized by increased mitochondrial respiration and reduced mitochondrial membrane potential. Furthermore, synuclein deficiency results in reduced ATP synthase efficiency and lower ATP levels. Exogenous application of low unfolded α-synuclein concentrations is able to increase the ATP synthase activity that rescues the mitochondrial phenotypes observed in synuclein deficiency. Overall, the data suggest that α-synuclein is a previously unrecognized physiological regulator of mitochondrial bioenergetics through its ability to interact with ATP synthase and increase its efficiency. This may be of particular importance in times of stress or PD mutations leading to energy depletion and neuronal cell toxicity

    Simultaneous and independent detection of C9ORF72 alleles with low and high number of GGGGCC repeats using an optimised protocol of Southern blot hybridisation

    Get PDF
    Background Sizing of GGGGCC hexanucleotide repeat expansions within the C9ORF72 locus, which account for approximately 10% of all amyotrophic lateral sclerosis (ALS) cases, is urgently required to answer fundamental questions about mechanisms of pathogenesis in this important genetic variant. Currently employed PCR protocols are limited to discrimination between the presence and absence of a modified allele with more than 30 copies of the repeat, while Southern hybridisation-based methods are confounded by the somatic heterogeneity commonly present in blood samples, which might cause false-negative or ambiguous results. Results We describe an optimised Southern hybridisation-based protocol that allows confident detection of the presence of a C9ORF72 repeat expansion alongside independent assessment of its heterogeneity and the number of repeat units. The protocol can be used with either a radiolabeled or non-radiolabeled probe. Using this method we have successfully sized the C9ORF72 repeat expansion in lymphoblastoid cells, peripheral blood, and post-mortem central nervous system (CNS) tissue from ALS patients. It was also possible to confidently demonstrate the presence of repeat expansion, although of different magnitude, in both C9ORF72 alleles of the genome of one patient. Conclusions The suggested protocol has sufficient advantages to warrant adoption as a standard for Southern blot hybridisation analysis of GGGGCC repeat expansions in the C9ORF72 locu

    Dimebon Does Not Ameliorate Pathological Changes Caused by Expression of Truncated (1–120) Human Alpha-Synuclein in Dopaminergic Neurons of Transgenic Mice

    Get PDF
    Background: Recent clinical studies have demonstrated that dimebon, a drug originally designed and used as a non-selective antihistamine, ameliorates symptoms and delays progress of mild to moderate forms of Alzheimer’s and Huntington’s diseases. Although the mechanism of dimebon action on pathological processes in degenerating brain is elusive, results of studies carried out in cell cultures and animal models suggested that this drug might affect the process of pathological accumulation and aggregation of various proteins involved in the pathogenesis of proteinopathies. However, the effect of this drug on the pathology caused by overexpression and aggregation of alpha-synuclein, including Parkinson’s disease (PD), has not been assessed. Objective: To test if dimebon affected alpha-synuclein-induced pathology using a transgenic animal model. Methods: We studied the effects of chronic dimebon treatment on transgenic mice expressing the C-terminally truncated (1–120) form of human alpha-synuclein in dopaminergic neurons, a mouse model that recapitulates several biochemical, histopathological and behavioral characteristics of the early stage of PD. Results: Dimebon did not improve balance and coordination of aging transgenic animals or increase the level of striatal dopamine, nor did it prevent accumulation of alpha-synuclein in cell bodies of dopaminergic neurons. Conclusion: Our observations suggest that in the studied model of alpha-synucleinopathy dimebon has very limited effect on certain pathological alterations typical of PD and related diseases

    Therapeutic effect of exogenous Hsp70 in mouse models of Alzheimer's disease

    Get PDF
    Brain deterioration resulting from "protein folding" diseases, such as the Alzheimer's disease (AD), is one of the leading causes of morbidity and mortality in the aging human population. Heat shock proteins (Hsps) constitute the major cellular quality control system for proteins that mitigates the pathological burden of neurotoxic protein fibrils and aggregates. However, the therapeutic effect of Hsps has not been tested in a relevant setting. Here we report the dramatic neuroprotective effect of recombinant human Hsp70 in the bilateral olfactory bulbectomy model (OBX mice) and 5XFAD mouse models of neurodegeneration. We show that intranasally-administered Hsp70 rapidly enters the afflicted brain regions and mitigates multiple AD-like morphological and cognitive abnormalities observed in model animals. In particular, in both cases it normalizes the density of neurons in the hippocampus and cortex which correlates with the diminished accumulation of amyloid-β (Aβ) peptide and, in the case of 5XFAD mice, reduces Aβ plaque formation. Consistently, Hsp70 treatment also protects spatial memory in OBX and 5XFAD mice. These studies demonstrate that exogenous Hsp70 may be a practical therapeutic agent for treatment of neurodegenerative diseases associated with abnormal protein biogenesis and cognitive disturbances, such as AD, for which neuroprotective therapy is urgently needed

    Lipid Classes and Fatty Acid Patterns are Altered in the Brain of γ-Synuclein Null Mutant Mice

    Get PDF
    The well-documented link between α-synuclein and the pathology of common human neurodegenerative diseases has increased attention to the synuclein protein family. The involvement of α-synuclein in lipid metabolism in both normal and diseased nervous system has been shown by many research groups. However, the possible involvement of γ-synuclein, a closely-related member of the synuclein family, in these processes has hardly been addressed. In this study, the effect of γ-synuclein deficiency on the lipid composition and fatty acid patterns of individual lipids from two brain regions has been studied using a mouse model. The level of phosphatidylserine (PtdSer) was increased in the midbrain whereas no changes in the relative proportions of membrane polar lipids were observed in the cortex of γ-synuclein-deficient compared to wild-type (WT) mice. In addition, higher levels of docosahexaenoic acid were found in PtdSer and phosphatidylethanolamine (PtdEtn) from the cerebral cortex of γ-synuclein null mutant mice. These findings show that γ-synuclein deficiency leads to alterations in the lipid profile in brain tissues and suggest that this protein, like α-synuclein, might affect neuronal function via modulation of lipid metabolism
    corecore