261 research outputs found
Promoting Collaboration and Conversation in Young Students with Academic and Social Delays During Small Group Instruction
The purpose of this study was to evaluate how to maximize small group academic instruction by including opportunities for children to earn access to preferred items and activities by collaborating with a peer to earn tokens for correct behaviors, as well as opportunities for conversation around preferred items. A multiple probe design across dyads was used to evaluate the effectiveness of a PTD procedure for teaching young children to name novel sight words. In addition, the effects of an SLP procedure on conversation initiations and responses were assessed within the context of A-B designs. The results showed the PTD procedure was effective in teaching participants in Dyad 1 and Dyad 2 to name sight words. The SLP procedure was effective in increasing both conversation initiations and responses between trials for participants with typical social skills. Participants with social delays engaged in few conversation initiations, but displayed a high rate of responding to peer initiations
Low-energy electron scattering by CH_3F, CH_2F_2, CHF_3, and CF_4
We present measured and calculated differential cross sections, as well as calculated integral cross sections, for elastic electron collisions with CH_3F, CH_2F_2, CHF_3, and CF_4. The calculated cross sections were obtained with the Schwinger multichannel method, and a Born-closure procedure was used to improve the differential cross sections for polar systems. Polarization effects were found to be relevant even for systems with moderately large permanent dipole moments, such as CH_3F and CHF_3. In general, there is good agreement between theory and experiment
A comparison of similar aerosol measurements made on the NASA P3-B, DC-8, and NSF C-130 aircraft during TRACE-P and ACE-Asia
Two major aircraft experiments occurred off the Pacific coast of Asia during spring 2001: the NASA sponsored Transport and Chemical Evolution over the Pacific (TRACE-P) and the National Science Foundation (NSF) sponsored Aerosol Characterization Experiment-Asia (ACE-Asia). Both experiments studied emissions from the Asian continent (biomass burning, urban/industrial pollution, and dust). TRACE-P focused on trace gases and aerosol during March/April and was based primarily in Hong Kong and Yokota Air Force Base, Japan, and involved two aircraft: the NASA DC-8 and the NASA P3-B. ACE-Asia focused on aerosol and radiation during April/May and was based in Iwakuni Marine Corps Air Station, Japan, and involved the NSF C-130. This paper compares aerosol measurements from these aircraft including aerosol concentrations, size distributions (and integral properties), chemistry, and optical properties. Best overall agreement (generally within RMS instrumental uncertainty) was for physical properties of the submircron aerosol, including condensation nuclei concentrations, scattering coefficients, and differential mobility analyzer and optical particle counter (OPC) accumulation mode size distributions. Larger differences (typically outside of the RMS uncertainty) were often observed for parameters related to the supermicron aerosols (total scattering and absorption coefficients, coarse mode Forward Scattering Spectrometer Probe and OPC size distributions/integral properties, and soluble chemical species usually associated with the largest particles, e.g., Na+, Cl−, Ca2+, and Mg2+), where aircraft sampling is more demanding. Some of the observed differences reflect different inlets (e.g., low-turbulence inlet enhancement of coarse mode aerosol), differences in sampling lines, and instrument configuration and design. Means and variances of comparable measurements for horizontal legs were calculated, and regression analyses were performed for each platform and allow for an assessment of instrument performance. These results provide a basis for integrating aerosol data from these aircraft platforms for both the TRACE-P and ACE-Asia experiments
Gene conversion in human rearranged immunoglobulin genes
Over the past 20 years, many DNA sequences have been published suggesting that all or part of the V<sub>H</sub> segment of a rearranged immunoglobulin gene may be replaced in vivo. Two different mechanisms appear to be operating. One of these is very similar to primary V(D)J recombination, involving the RAG proteins acting upon recombination signal sequences, and this has recently been proven to occur. Other sequences, many of which show partial V<sub>H</sub> replacements with no addition of untemplated nucleotides at the V<sub>H</sub>–V<sub>H</sub> joint, have been proposed to occur by an unusual RAG-mediated recombination with the formation of hybrid (coding-to-signal) joints. These appear to occur in cells already undergoing somatic hypermutation in which, some authors are convinced, RAG genes are silenced. We recently proposed that the latter type of V<sub>H</sub> replacement might occur by homologous recombination initiated by the activity of AID (activation-induced cytidine deaminase), which is essential for somatic hypermutation and gene conversion. The latter has been observed in other species, but not in human Ig genes, so far. In this paper, we present a new analysis of sequences published as examples of the second type of rearrangement. This not only shows that AID recognition motifs occur in recombination regions but also that some sequences show replacement of central sections by a sequence from another gene, similar to gene conversion in the immunoglobulin genes of other species. These observations support the proposal that this type of rearrangement is likely to be AID-mediated rather than RAG-mediated and is consistent with gene conversion
Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar data set - DISCOVER-AQ 2011
© Author(s) 2014. This open access work is distributed under the Creative Commons Attribution 3.0 License (https://creativecommons.org/licenses/by/3.0/).Retrievals of aerosol microphysical properties (effective radius, volume and surface-area concentrations) and aerosol optical properties (complex index of refraction and single-scattering albedo) were obtained from a hybrid multiwavelength lidar data set for the first time. In July 2011, in the Baltimore-Washington DC region, synergistic profiling of optical and microphysical properties of aerosols with both airborne (in situ and remote sensing) and ground-based remote sensing systems was performed during the first deployment of DISCOVER-AQ. The hybrid multiwavelength lidar data set combines ground-based elastic backscatter lidar measurements at 355 nm with airborne High-Spectral-Resolution Lidar (HSRL) measurements at 532 nm and elastic backscatter lidar measurements at 1064 nm that were obtained less than 5 km apart from each other. This was the first study in which optical and microphysical retrievals from lidar were obtained during the day and directly compared to AERONET and in situ measurements for 11 cases. Good agreement was observed between lidar and AERONET retrievals. Larger discrepancies were observed between lidar retrievals and in situ measurements obtained by the aircraft and aerosol hygroscopic effects are believed to be the main factor in such discrepancies.Peer reviewe
Elastic scattering of slow electrons by n-propanol and n-butanol
We report measured and calculated cross sections for elastic scattering of low-energy electrons by the alcohols n-propanol and n-butanol in the gas phase. The measurements were carried out using the relative-flow method with an aperture source rather than a conventional tube or capillary-array source, eliminating the need to know molecular diameters. The calculations employed two different implementations of the Schwinger multichannel variational method and included polarization effects. The differential cross sections are dominated by strong forward scattering due to the molecules' large electric dipole moments, but near 10 eV, they display structure at intermediate angles that is probably associated with shape resonances, notably a pronounced f-wave scattering pattern. Overall agreement between the measured and calculated results is fair. We compare the cross sections of these larger alcohols to those of methanol and ethanol, as well as to those of alkanes
Regulatory T Cells in γ Irradiation-Induced Immune Suppression
Sublethal total body γ irradiation (TBI) of mammals causes generalized immunosuppression, in part by induction of lymphocyte apoptosis. Here, we provide evidence that a part of this immune suppression may be attributable to dysfunction of immune regulation. We investigated the effects of sublethal TBI on T cell memory responses to gain insight into the potential for loss of vaccine immunity following such exposure. We show that in mice primed to an MHC class I alloantigen, the accelerated graft rejection T memory response is specifically lost several weeks following TBI, whereas identically treated naïve mice at the same time point had completely recovered normal rejection kinetics. Depletion in vivo with anti-CD4 or anti-CD25 showed that the mechanism involved cells consistent with a regulatory T cell (T reg) phenotype. The loss of the T memory response following TBI was associated with a relative increase of CD4+CD25+ Foxp3+ expressing T regs, as compared to the CD8+ T effector cells requisite for skin graft rejection. The radiation-induced T memory suppression was shown to be antigen-specific in that a third party ipsilateral graft rejected with normal kinetics. Remarkably, following the eventual rejection of the first MHC class I disparate skin graft, the suppressive environment was maintained, with markedly prolonged survival of a second identical allograft. These findings have potential importance as regards the immunologic status of T memory responses in victims of ionizing radiation exposure and apoptosis-inducing therapies
Sizing response of the Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) and Laser Aerosol Spectrometer (LAS) to changes in submicron aerosol composition and refractive index
We evaluate the sensitivity of the size calibrations of
two commercially available, high-resolution optical particle sizers to
changes in aerosol composition and complex refractive index (RI). The
Droplet Measurement Technologies Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) and the TSI, Inc. Laser Aerosol Spectrometer (LAS) are
two commonly used instruments for measuring the portion of the aerosol size
distribution with diameters larger than nominally 60–90 nm. Both instruments
illuminate particles with a laser and relate the single-particle light
scattering intensity and count rate measured over a wide range of angles to
the size-dependent particle concentration. While the optical block geometry
and flow system are similar for each instrument, a significant difference
between the two models is the laser wavelength (1054 nm for the UHSAS and
633 nm for the LAS) and intensity (about 100 times higher for the UHSAS), which
may affect the way each instrument sizes non-spherical or absorbing
aerosols. Here, we challenge the UHSAS and LAS with laboratory-generated,
mobility-size-classified aerosols of known chemical composition to quantify
changes in the optical size response relative to that of ammonium sulfate
(RI of 1.52+0i at 532 nm) and NIST-traceable polystyrene latex spheres
(PSLs with RI of 1.59+0i at 589 nm). Aerosol inorganic salt species are
chosen to cover the real refractive index range of 1.32 to 1.78, while
chosen light-absorbing carbonaceous aerosols include fullerene soot,
nigrosine dye, humic acid, and fulvic acid standards. The instrument
response is generally in good agreement with the electrical mobility
diameter. However, large undersizing deviations are observed for the
low-refractive-index fluoride salts and the strongly absorbing nigrosine dye and fullerene soot particles. Polydisperse size distributions for both fresh
and aged wildfire smoke aerosols from the recent Fire Influence on Regional
to Global Environments Experiment and Air Quality (FIREX-AQ) and the Cloud,
Aerosol, and Monsoon Processes Philippines Experiment (CAMP2Ex)
airborne campaigns show good agreement between both optical sizers and
contemporaneous electrical mobility sizing and particle time-of-flight mass
spectrometric measurements. We assess the instrument uncertainties by
interpolating the laboratory response curves using previously reported RIs
and size distributions for multiple aerosol type classifications. These
results suggest that, while the optical sizers may underperform for strongly
absorbing laboratory compounds and fresh tailpipe emissions measurements,
sampling aerosols within the atmospherically relevant range of refractive
indices are likely to be sized to better than ±10 %–20 % uncertainty over the submicron aerosol size range when using instruments calibrated with
ammonium sulfate.</p
- …