44,612 research outputs found

    Ionization of hydrogen atoms by electron impact at 1eV, 0.5eV and 0.3eV above threshold

    Full text link
    We present here triple differential cross sections for ionization of hydrogen atoms by electron impact at 1eV, 0.5eV and 0.3eV energy above threshold, calculated in the hyperspherical partial wave theory. The results are in very good agreement with the available semiclassical results of Deb and Crothers \cite{DC02} for these energies. With this, we are able to demonstrate that the hyperspherical partial wave theory yields good cross sections from 30 eV \cite{DPC03} down to near threshold for equal energy sharing kinematics.Comment: 6 pages, 9 figure

    Polaron Crossover in Molecular Solids

    Full text link
    An analytical variational method is applied to the molecular Holstein Hamiltonian in which the dispersive features of the dimension dependent phonon spectrum are taken into account by a force constant approach. The crossover between a large and a small size polaron is monitored, in one, two and three dimensions and for different values of the adiabatic parameter, through the behavior of the effective mass as a function of the electron-phonon coupling. By increasing the strength of the inter-molecular forces the crossover becomes smoother and occurs at higher {\it e-ph} couplings. These effects are more evident in three dimensions. We show that our Modified Lang-Firsov method starts to capture the occurence of a polaron self-trapping transition when the electron energies become of order of the phonon energies. The self-trapping event persists in the fully adiabatic regime. At the crossover we estimate polaron effective masses of order ∼5−40\sim 5 - 40 times the bare band mass according to dimensionality and value of the adiabatic parameter. Modified Lang-Firsov polaron masses are substantially reduced in two and three dimensions. There is no self-trapping in the antiadiabatic regime.Comment: To be published in J.Phys.:Condensed Matte

    Radio Observations of AGN in Low Surface Brightness Galaxies

    Full text link
    We present preliminary results of a study of the low frequency radio continuum emission from the nuclei of Giant Low Surface Brightness (LSB) galaxies. We have mapped the emission and searched for extended features such as radio lobes/jets associated with AGN activity. LSB galaxies are poor in star formation and generally less evolved compared to nearby bright spirals. This paper presents low frequency observations of 3 galaxies; PGC 045080 at 1.4 GHz, 610 MHz, 325MHz, UGC 1922 at 610 MHz and UGC 6614 at 610 MHz. The observations were done with the GMRT. Radio cores as well as extended structures were detected and mapped in all three galaxies; the extended emission may be assocated with jets/lobes associated with AGN activity. Our results indicate that although these galaxies are optically dim, their nuclei can host AGN that are bright in the radio domain.Comment: To appear in proceedings IAU Symp 244, 'Dark Galaxies and Lost Baryons', June 2007, 2 pages including 1 figur
    • …
    corecore