346 research outputs found

    HTR2008-58015 ROTOR SCALE MODEL TESTS FOR POWER CONVERSION UNIT OF GT-MHR

    Get PDF
    ABSTRACT A power-generating unit with the high-temperature helium reactor (GT-MHR) has a turbomachine (TM) that is intended for both conversion of coolant thermal energy into electric power in the direct gas-turbine cycle, and provision of helium circulation in the primary circuit. The vertically oriented TM is placed in the central area of the power conversion unit (PCU). TM consists of a turbocompressor (TC) and a generator. Their rotors are joined with a diaphragm coupling and supported by electro-magnetic bearings (EMB). The complexity and novelty of the task of the full electromagnetic suspension system development requires thorough stepwise experimental work, from small-scale physical models to full-scale specimen. On this purpose, the following is planned within the framework of the GT-MHR Project: investigations of the "flexible" rotor small-scale mockup with electro-magnetic bearings ("Minimockup" test facility); tests of the radial EMB; tests of the position sensors; tests of the TM rotor scale model; tests of the TM catcher bearings (CB) friction pairs; tests of the CB mockups; tests of EMB and CB pilot samples and investigation of the full-scale electromagnetic suspension system as a part of full-scale turbocompressor tests. The rotor scale model (RSM) tests aim at investigation of dynamics of rotor supported by electromagnetic bearings to validate GT-MHR turbomachine serviceability. Like the full-scale turbomachine rotor, the RSM consist of two parts: the generator rotor model and the turbocompressor rotor model that are joined with a coupling. Both flexible and rigid coupling options are tested. Each rotor is supported by one axial and two radial EMBs. The rotor is arranged vertically. The RSM rotor length is 10.54 m, and mass is 1171 kg. The designs of physical model elements, namely of the turbine, compressors, generator and exciter, are simplified and performed with account of rigid characteristics, which are identical to those of the full-scale turbomachine elements. INTRODUCTION A power-generating unit with the high-temperature helium reacto

    Scientific and Professional Degrees in Russia: Developing Traditions into the Future

    Get PDF
    When studying the history of Russian education, one becomes convinced of the validity of the dialectical principles of spiral development. The period of cyclicality in the history of attestation of scientific personnel is approximately equal to a century. In the first quarter of every century, starting from the time of the tsar Peter the Great, events took place that brought the system to a fundamentally new level. But at the same time, the fundamental foundations laid by the tsar Peter the Great and Lomonosov remain constant. Analyzing the attestation system development spiral, we find ways to solve urgent problems, and the foremost among them is ensuring Russia’s technological sovereignty. A similar problem stood a century ago. It was fully resolved in the USSR, but the foundations for its solution were laid in 1917 in the decree issued by the Russian Provisional Government: “On granting the Petrograd Polytechnic Institute the right to award academic degrees”. In the socioeconomic conditions of the modern Russia, we need new solutions. In this article we offer the

    Information geometry and sufficient statistics

    Full text link
    Information geometry provides a geometric approach to families of statistical models. The key geometric structures are the Fisher quadratic form and the Amari-Chentsov tensor. In statistics, the notion of sufficient statistic expresses the criterion for passing from one model to another without loss of information. This leads to the question how the geometric structures behave under such sufficient statistics. While this is well studied in the finite sample size case, in the infinite case, we encounter technical problems concerning the appropriate topologies. Here, we introduce notions of parametrized measure models and tensor fields on them that exhibit the right behavior under statistical transformations. Within this framework, we can then handle the topological issues and show that the Fisher metric and the Amari-Chentsov tensor on statistical models in the class of symmetric 2-tensor fields and 3-tensor fields can be uniquely (up to a constant) characterized by their invariance under sufficient statistics, thereby achieving a full generalization of the original result of Chentsov to infinite sample sizes. More generally, we decompose Markov morphisms between statistical models in terms of statistics. In particular, a monotonicity result for the Fisher information naturally follows.Comment: 37 p, final version, minor corrections, improved presentatio

    The Hitting Times with Taboo for a Random Walk on an Integer Lattice

    Full text link
    For a symmetric, homogeneous and irreducible random walk on d-dimensional integer lattice Z^d, having zero mean and a finite variance of jumps, we study the passage times (with possible infinite values) determined by the starting point x, the hitting state y and the taboo state z. We find the probability that these passages times are finite and analyze the tails of their cumulative distribution functions. In particular, it turns out that for the random walk on Z^d, except for a simple (nearest neighbor) random walk on Z, the order of the tail decrease is specified by dimension d only. In contrast, for a simple random walk on Z, the asymptotic properties of hitting times with taboo essentially depend on the mutual location of the points x, y and z. These problems originated in our recent study of branching random walk on Z^d with a single source of branching
    corecore