59 research outputs found

    On numerical modeling of couple heat, air and moisture transfer through multilayered walls

    Get PDF
    This paper reports on numerical modeling of heat, air, and moisture transfer through multilayered walls. Building materials are often subjected to temporal climatic variations, which can induce a transfer of heat and moisture through the walls of the building and the foundation soil. These materials are generally considered as porous media. The coupled heat, air and moisture transfer in building materials is of paramount importance in the construction area. In this way, a mathematical model has been elaborated and validated using a benchmark example. Here, we aim to determine the energy losses. The capillary pressure is considered as potential moisture which represents both the transport of vapor and liquid phases of the water. Basing on basic functions of partial differential equations, one can convert certain measurable properties of porous media as coefficients depending on the temperature and the capillary pressure. The results obtained compare favorably with other available in the literature

    Surface stiffening and enhanced photoluminescence of ion implanted cellulose - polyvinyl alcohol - silica composite

    Full text link
    Novel Cellulose (Cel) reinforced polyvinyl alcohol (PVA)-Silica (Si) composite which has good stability and in vitro degradation was prepared by lyophilization technique and implanted using N3+ ions of energy 24 keV in the fluences of 1 x 10(15), 5 x 10(15) and 1 x 10(16) ions/cm(2). SEM analysis revealed the formation of microstructures, and improved the surface roughness on ion implantation. In addition to these structural changes, the implantation significantly modified the luminescent, thermal and mechanical properties of the samples. The elastic modulus of the implanted samples has increased by about 50 times compared to the pristine which confirms that the stiffness of the sample surface has increased remarkably on ion implantation. The photoluminescence of the native cellulose has improved greatly due to defect site, dangling bonds and hydrogen passivation. Electric conductivity of the ion implanted samples was improved by about 25%. Hence, low energy ion implantation tunes the mechanical property, surface roughness and further induces the formation of nano structures. MG63 cells seeded onto the scaffolds reveals that with the increase in implantation fluence, the cell attachment, viability and proliferation have improved greatly compared to pristine. The enhancement of cell growth of about 59% was observed in the implanted samples compared to pristine. These properties will enable the scaffolds to be ideal for bone tissue engineering and imaging applications.G.M.S. acknowledges CSIR, India (Grant no: 09/468 (0474)/2013-EMR-I) and S.N.K. thanks the award of Erasmus-Mundus Svaagata for providing financial support to carry out this research. G.M.S., N.S. and S.N.K. acknowledge the support of UGC National facility for characterization facility. J.A.G.T. acknowledges the support of the Spanish Ministry of Economy and Competitiveness (MINECO) through the project DPI2015-65401-C3-2-R (including the FEDER financial support). CIBER-BBN, Spain is an initiative funded by the VI National R&D Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. AFM was conducted by the microscopy service of the UPV, whose advice was greatly appreciated.Shanthini, GM.; Sakthivel, N.; Menon, R.; Nabhiraj, PY.; Gómez-Tejedor, JA.; Meseguer Dueñas, JM.; Gómez Ribelles, JL.... (2016). Surface stiffening and enhanced photoluminescence of ion implanted cellulose - polyvinyl alcohol - silica composite. Carbohydrate Polymers. 153:619-630. https://doi.org/10.1016/j.carbpol.2016.08.016S61963015

    From Architectured Materials to Large-Scale Additive Manufacturing

    Get PDF
    The classical material-by-design approach has been extensively perfected by materials scientists, while engineers have been optimising structures geometrically for centuries. The purpose of architectured materials is to build bridges across themicroscale ofmaterials and themacroscale of engineering structures, to put some geometry in the microstructure. This is a paradigm shift. Materials cannot be considered monolithic anymore. Any set of materials functions, even antagonistic ones, can be envisaged in the future. In this paper, we intend to demonstrate the pertinence of computation for developing architectured materials, and the not-so-incidental outcome which led us to developing large-scale additive manufacturing for architectural applications

    Investigating The Inhibition Of 5-LO Enzyme By Main Cannabinoids Contained In Cannabis Sativa And Seized Resin Cannabis By Using Molecular Modeling

    No full text
    Therapeutic cannabis is a subject which many researchers are very interested in all over the world. The effect of main compound of Cannabis is investigated to treat many diseases. Arachidonate 5-lypoxygenase (5-LO) is implicated in cancer progression, inflammation, tissue damage and other sickness. Commonly to inhibit 5-LO enzyme a famous drug Zileuton is used. In our work we compare inhibition of 5-LO by main compounds of cannabis using tools such as molecular mechanics, molecular dynamics and molecular docking by using MOE software (Molecular Operating Environment) [1]. Obtained results show that main cannabinoids inhibit 5- LO better than Zileuton

    Effet de la méthode de préparation sur le comportement non drainé d’un sol granulaire

    No full text
    Cet article présente une étude expérimentale réalisée en laboratoire à l’appareil triaxial sur l’influence de la méthode de préparation des échantillons sur le comportement non drainé du sol de Chlef. Les essais ont été effectués sur des échantillons de densité relative initiale de 29, 50 et 80 % et à des pressions de confinement effectives initiales de 50, 100 et 200 kPa selon deux méthodes de préparation à savoir la pluviation à sec (PS) et le placement humide (PH) à une teneur en eau de 3 %. Les résultats des essais montrent que le confinement initial affecte d’une manière considérable la résistance à la liquéfaction du sol. En effet, cette dernière augmente avec la pression de confinement. Les résultats montrent aussi que les échantillons préparés avec la méthode de pluviation à sec présentent une résistance à la liquéfaction plus élevée que ceux préparés avec la méthode du placement humide, en mobilisant un effort résiduel plus grand
    • …
    corecore