13 research outputs found

    r-modes in Relativistic Superfluid Stars

    Full text link
    We discuss the modal properties of the rr-modes of relativistic superfluid neutron stars, taking account of the entrainment effects between superfluids. In this paper, the neutron stars are assumed to be filled with neutron and proton superfluids and the strength of the entrainment effects between the superfluids are represented by a single parameter η\eta. We find that the basic properties of the rr-modes in a relativistic superfluid star are very similar to those found for a Newtonian superfluid star. The rr-modes of a relativistic superfluid star are split into two families, ordinary fluid-like rr-modes (ror^o-mode) and superfluid-like rr-modes (rsr^s-mode). The two superfluids counter-move for the rsr^s-modes, while they co-move for the ror^o-modes. For the ror^o-modes, the quantity κσ/Ω+m\kappa\equiv\sigma/\Omega+m is almost independent of the entrainment parameter η\eta, where mm and σ\sigma are the azimuthal wave number and the oscillation frequency observed by an inertial observer at spatial infinity, respectively. For the rsr^s-modes, on the other hand, κ\kappa almost linearly increases with increasing η\eta. It is also found that the radiation driven instability due to the rsr^s-modes is much weaker than that of the ror^o-modes because the matter current associated with the axial parity perturbations almost completely vanishes.Comment: 14 pages, 4 figures. To appear in Physical Review

    Particle Motion and Electromagnetic Fields of Rotating Compact Gravitating Objects with Gravitomagnetic Charge

    Full text link
    The exact solution for the electromagnetic field occuring when the Kerr-Taub-NUT compact object is immersed (i) in an originally uniform magnetic field aligned along the axis of axial symmetry (ii) in dipolar magnetic field generated by current loop has been investigated. Effective potential of motion of charged test particle around Kerr-Taub-NUT gravitational source immersed in magnetic field with different values of external magnetic field and NUT parameter has been also investigated. In both cases presence of NUT parameter and magnetic field shifts stable circular orbits in the direction of the central gravitating object. Finally we find analytical solutions of Maxwell equations in the external background spacetime of a slowly rotating magnetized NUT star. The star is considered isolated and in vacuum, with monopolar configuration model for the stellar magnetic field.Comment: 18 pages, 6 figures, new results in section 2 added, section 3 is revised, 3 references are adde

    High frequency oscillations during magnetar flares

    Full text link
    The recent discovery of high frequency oscillations during giant flares from the Soft Gamma Repeaters SGR 1806-20 and SGR 1900+14 may be the first direct detection of vibrations in a neutron star crust. If this interpretation is correct it offers a novel means of testing the neutron star equation of state, crustal breaking strain, and magnetic field configuration. We review the observational data on the magnetar oscillations, including new timing analysis of the SGR 1806-20 giant flare using data from the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Rossi X-ray Timing Explorer (RXTE). We discuss the implications for the study of neutron star structure and crust thickness, and outline areas for future investigation.Comment: 5 pages, 1 figure, to appear in the proceedings of the conference "Isolated Neutron Stars: from the Interior to the Surface" (April 2006, London), eds. D. Page, R. Turolla, & S. Zane, Astrophysics & Space Science in pres

    Physics of Neutron Star Crusts

    Get PDF
    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.Comment: 182 pages, published version available at <http://www.livingreviews.org/lrr-2008-10

    A toy model for global magnetar oscillation

    No full text
    The presence of a magnetic field in a neutron star interior results in a dynamical coupling between the fluid core and the elastic crust. We consider a simple toy-model where this coupling is taken into account and compute the system�s mode oscillations. Our results suggest that the notion of pure torsional crust modes is not useful for the coupled system, instead all modes excite Alfvén waves in the core. However, we also show that among a rich spectrum of global MHD modes the ones most likely to be excited by a fractured crust are those for which the crust and the core oscillate in concert. For our simple model, the frequencies of these modes are similar to the �pure crustal� frequencies. We advocate the significant implications of these results for the attempted theoretical interpretation of QPOs during magnetar flares in terms of neutron star oscillations
    corecore